
Homework 0: Alohamora!
Abhinav Modi

Masters of Engineering in Robotics
University of Maryland, College Park

Email: abhi1625@umd.edu
USING 3 LATE DAYS

I. INTRODUCTION

Boundary detection and Image classification are two
fundamental problems that are answered using image
processing techniques. Thus, anyone looking to start learning
in the field of Computer Vision needs to know about these
problems and should attempt to learn different techniques
required to solve the two. This document is divided into two
phases in order to address the two problems with different
techniques: Phase1-Probability of Boundary Technique for
edge and boundary detection and Phase2-A deep learning
approach for image classification on CIFAR-10 dataset.

II. PHASE 1: SHAKE MY BOUNDARY

In this section we perform boundary detection using a
method called ”PB-Lite”. The outline of the process if shown
in the figure below:
The first step in this process is to filter the image and find
a texton map which is essentially the texture map of the
image. This is computed by clustering the filter responses
with K-Means clustering.

Filtering is used to access the low level features in the
image. This helps us to measure and aggregate the regional
texture, brightness and color properties. Different scales and
orientations of a particular filter are used so that various types
of textures can be addressed. Here, we have used three filter
banks namely: Oriented DoG filters, Leung-Malik Filters and
Gabor Filters.

A. Oriented DoG Filters

The Oriented Difference of Gaussian Filter is generated by
taking the difference of two normal Gaussian Filters with same
variance but the centers are of each is shifted by an amount
equal to the standard deviation. This filter can also be created
by convolving a simple Sobel Filter and a Gaussian kernel. The
figure below shows the gaussian filter bank used for generating
the results shown in the future sections.

The filter bank is generated by using 3 different scale values
and 15 orientations for each scale, linearly-spaced from 0 deg
to 360 deg. Hence, the total number of filters is 3 ∗ 15 = 45.

Fig. 1. DoG Filter Bank

B. Leung-Malik Filters

The Leung-Malik filter bank is a collection 48 filters with
multiple scales and orientations. It consists of first and second
order derivatives of Gaussians, Laplacian of Gaussian(LOG)
filters and 4 Gaussian filters. All these filters account for
different types of features in the image. The filter bank is
shown in the figure (2)

C. Gabor Filters

Gabor filters are inspired based on the way human visual
system. A Gabor filter is generated by modulating a gaussian
kernel with a sinusoidal plane wave. This is a linear filter that
basically analyses if there is any specific frequency(governed
by λ) content in the image in specific directions around the
point of interest. The Gabor filterbank used in this project is
shown in the figure(3) The filter bank with is generated for
λ=1 with three scales:[9,16,25]. Also, for each scale value, 15
filters with different orientations, uniformly spaced from 0 to
360 degrees are generated.

D. Texton Map T
Once the filtering process of the image is complete, we end

up with a stack of images of size m × n × N , where m,n
are the dimensions of the image and N is the total number

Fig. 2. LM filter bank

Fig. 3. Gabor filter bank

of filters used. Thus, each pixel value can now be represented
as a distribution of these N values. Each distribution is then
represented by a unique Texton-ID. These different distribu-
tions for all the pixels are then clustered into K textons using
K-Means. This generates an image which captures the texture
changes in the original image. Texton Maps for all the test set
images be seen in the following figures:

E. Brightness Map B

The Brightness map captures the changes in intensity of
light in the image. Similar to Texton map generation the K-

Fig. 4. Texton Maps of the 10 test images

Means clustering of the grayscale image is performed for
K=16 and the output can be seen below:

Fig. 5. Brightness Maps of the 10 test images

F. Color Map C

The Color map captures the changes in color/ chrominance
in the image. The color values were clustered using K-Means
clustering into 16 clusters. This generates an output image

which can be seen below:

Fig. 6. Color Maps of the 10 test images

G. Gradient Maps

The Maps generated above are used to calculate gradient
maps T},B} and C}. These maps encode the texture, brightness

and color distributions changing at each pixel. These are
generated by comparing the values at each pixel by convolving
the image with a left/right half-disc pair centered at the pixel.
The basic concept behind this is that if the values are similar
the gradient should be small and if the values are dissimilar,
the gradient will be large.

The half-disks are generated by multiplying an array of
size equal to the radius/scale of the circular disk with all
values which lie inside this radius equal to 1 and rest 0, with
an array of equal size but where one half of the array is 0s
and the other half consists of 1s. This multiplication results
in a half-disk which can be rotated to produce the desired
half-disk mask.

Here if you rotate the disk after you’ve multiplied the two
arrays will result in pixel voids. This can be avoided by
rotating the rectangular block matrix of 0s and 1s and then
by applying a ”logical OR” operator on them. This gives the
required half-disk masks which are shown below:

Fig. 7. Half-Disk Masks for scales=[5,7,16]

Using the above generated Half-Disk masks we com-
pute the Tg,Bg and Cg maps by comparing the distribu-
tions generated using each half-disk pair with a χ2 mea-
sure. The binning scheme is defined for K indexes which
is equal to the number of K-Means clusters for each
mathcalT,mathcalB,mathcalC. This procedure is repeated
for all the half-disk pairs to generate a 3D matrix of size
m×n×N where m,n are the dimensions of the image and N

is the number of filters. The values of K for texton, brightness
and color are 64, 16 and 16 respectivley.

The output of the mean of each Tg,Bg and Cg is given as
follows:

Fig. 8. Texton Gradients-Tg of the 10 test images

Fig. 9. Brightness Gradients-Bg of the 10 test images

H. PB-Lite Output
Finally, the gradient maps generated are combined with

Canny and Sobel baselines using the equation:

PbEdges =
(Tg + Bg + Cg)

3
�(w1∗cannyPb+w2∗sobelPb)

(1)

Fig. 10. Color Gradients-Cg of the 10 test images

The � is the Hadamard operator which is the element-wise
multiplicatin of the arrays in the equation. The choice of
the weights w1 and w2 is based on the canny and sobel
baselines and the features we want from each baseline. The
only constraint is that w1 + w2 = 1. The Canny and Sobel

outputs and the resulting Pb-lite outputs are shown in the
figures below:

Fig. 11. (a)Canny baseline of image 1, (b)Sobel baseline of image 1

Fig. 12. (c)PB-Lite output of image 1

Fig. 13. (a)Canny baseline of image 2, (b)Sobel baseline of image 2

Fig. 14. (c)PB-Lite output of the image 2

Fig. 15. (a)Canny baseline of image 3, (b)Sobel baseline of image 3

Fig. 16. (c)PB-Lite output of the image 3

Fig. 17. (a)Canny baseline of image 4, (b)Sobel baseline of image 4

Fig. 18. (c)PB-Lite output of the image 4

Fig. 19. (a)Canny baseline of image 5, (b)Sobel baseline of image 5

Fig. 20. (c)PB-Lite output of the image 5

Fig. 21. (a)Canny baseline of image 6, (b)Sobel baseline of image 6

Fig. 22. (c)PB-Lite output of the image 6

Fig. 23. (a)Canny baseline of image 7, (b)Sobel baseline of image 7

Fig. 24. (c)PB-Lite output of the image 7

Fig. 25. (a)Canny baseline of image 8, (b)Sobel baseline of image 8

Fig. 26. (c)PB-Lite output of the image 8

Fig. 27. (a)Canny baseline of image 9, (b)Sobel baseline of image 9

Fig. 28. (a)Canny baseline of image 9, (b)Sobel baseline of image 9

I. Discussion and Conclusion: Phase 1

While computing the PB-Lite output it was observed that
changing just the weights of the canny and sobel baselines
produced significant changes in the output image which can
be seen in the two images below:

Fig. 31. PB-Lite output canny baseline weight = 0.01 and 0.3

This happens due to the fact that Canny baseline also
includes weaker unwanted edges due to the averaging
operation performed while calculating the canny baseline.

For the scope of this project, these weights for canny and
sobel are calculated by trial and error. But the original paper
mentions about an optimization algorithm to calculate these
weights. Moreover, in the output of PB-Lite, there are still
more textures left. The fearures are weak but can be removed
by changing the scales and orientations of the filter banks
used.This can help produce better results.

Fig. 29. (a)Canny baseline of image 10, (b)Sobel baseline of image 10

Fig. 30. (c)PB-Lite output of the image 10

III. PHASE 2:A DIVE ON DEEP LEARNING

A. Convolutional Neural Network

This is an initial deep learning model. It is a simple
neural network with 4 convolution layers followed by 2 fully
connected layers and a softmax output layer. The architecture
is shown in fig(32) This architecture did not use any data aug-
mentation while training and also no standardization technique
was used. The network reached about 80% training accuracy
in about 45 epochs as can be seen in the fig(33). The important
thing to note here is that even though the training accuracy is
pretty high, the test accuracy reaches a maximum of 67.33%
for the same number of epochs as the train set, fig(34) and
fig(35)

Fig. 32. Alex Net - Simple CNN architecture

Fig. 33. Training and Loss vs Epochs for Alex Net(CNN)

Fig. 34. Test accuracy vs Epochs for Alex Net(CNN)

Fig. 35. Confusion Matrix for test results for Alex Net

Parameter Value
Batch Size 32
Learning Rate 0.001
Optimizer Adam
Number of Epochs 50
Max test Accuracy(last epoch) 69.03%
No. of Parameters 428426
Inference time(s) 0.087596s

TABLE I
PARAMETERS FOR THE DEEP NETWORK USED IN SECTION I

1) Improving accuracy: The previous network gives
acceptable results but its accuracy can be improved by
slightly tweaking the architecture. We first standardize
the dataset within values [-1,1]. Next we also apply data
augmentation techniques wherein we do random noise
addition as well random left and right image rotation. The
final touch is adding batch normalization layers after each
convolution layer. By doing this we force the input of every
layer to have approximately the same distribution in every
training step. This prevents the system from the internal

covariate shift problem and decrease training time. This is
shown in Fig(36). We get considerable improvement in the
test accuracy as the accuracy improves over the previous
model with a maximum of 75.65%. The model statistics are
shown in figs(37), (38) and (35)

Fig. 36. Alex Net - Simple CNN architecture with batch normalization layers

Fig. 37. Training and Loss vs Epochs for Alex Net(CNN) with batch
normalization layers and data augmentation

Fig. 38. Test accuracy vs Epochs for Alex Net(CNN) with batch normalization
layers and data augmentation

Fig. 39. Confusion Matrix for test results for Alex Net with batch normal-
ization layers and data augmentation

Parameter Value

Batch Size 32
Learning Rate 0.001
Optimizer Adam
Number of Epochs 50
Max test Accuracy(last epoch) 75.65%
No. of Parameters 428746
Inference time(s) 0.08945s

TABLE II
PARAMETERS AND RESULTS FOR ALEX NET WITH

BATCH NORMALIZATION AND DATA AUGMENTATION

B. Residual Neural Network(ResNet)

Keeping the standardization and data augmentation as it is
we implement the ResNet architecture. A Residual Network,
or ResNet is a neural network architecture which solves the
problem of vanishing gradients in the simplest way possible,
i.e., by applying skip connections in a general residual block
as shown in fig(40). This allows the network to accommodate
deep layers without having the vanishing gradient problem.
This network was only trained for 25 epochs and the training
and test set accuracy vs epochs can be seen in the fig(41) and
(42). Only 3 residual layers with 2 convolution layers each
were used in this ResNet network. As you can see the training
accuracy reaches about 80% for only 25 epochs and the test

set accuracy reaches to around 58% for such a short duration
of training. This can also be inferred from the rate of decrease
of loss per epoch.

Fig. 40. ResNext architecture with skip connection and cardinal layers

Fig. 41. Training and Loss vs Epochs for ResNext

C. ResNext

ResNext is a recent improvement on the ResNet
architecture. In addition to utilizing the concept of

Fig. 42. Test accuracy vs Epochs for ResNext

Fig. 43. Confusion Matrix for test results for ResNext

Parameter Value

Batch Size 32
Learning Rate 0.001
Optimizer Adam
Number of Epochs 25
Max test Accuracy(last epoch) 57.5%
No. of Parameters 2333002
Inference time(s) 0.10937s

TABLE III
PARAMETERS AND RESULTS FOR RESNET

residual learning framework from ResNet, the concept
of ”Cardinality” is introduced in this network. Cardinality
is the size of the set of split transformations an input
goes through before to is passed on to the fully connected
layers, as shown in fig(44). In ResNext architecture, the
input is split into different paths(number of split paths is
equal to the cardinality) and convolutions are performed
in each of these split paths. The outputs of these split
layers is then concatenated and added to the input itself,
followed by application of non-linearity. It is empirically
shown in the paper that even under the restricted condition
of maintaining complexity, increasing cardinality is able
to improve classification accuracy. Moreover, increasing
cardinality is more effective than going deeper or wider when
we increase the complexity of the network.

For this project ResNext architecture implemented is a sin-
gle residual layer with a cardinality of 5. Each cardinal(split)
layer has 2 convolution layers. The outputs from these layers
are concatenated and then passed through another convolution
layer. Finally the output is added to the original input and
then passed through an activation layer(ReLu) to the fully
connected layers. The training and test accuracy results can
be seen in the figures(45), (46) and (47)

Fig. 44. ResNext architecture with skip connection and cardinal layer

Fig. 45. Training and Loss vs Epochs for ResNext

Fig. 46. Test accuracy vs Epochs for ResNext

Fig. 47. Confusion Matrix for test results for ResNext

Parameter Value

Batch Size 32
Learning Rate 0.001
Optimizer Adam
Number of Epochs 50
Max test Accuracy(last epoch) 57.57%
No. of Parameters 2222442
Inference time(s) 0.12734s

TABLE IV
PARAMETERS AND RESULTS FOR RESNEXT

D. DenseNet

In the previous sections we have seen that that the accuracy
and efficiency of the CNNs can be substantially improved
by making shorter connections between layers close to the
input and those close to the output. In DenseNet each layer
connects to every other layer in a feed-forward fashion. This
can be seen in the fig(48) This solves the vanishing gradient
problem, allows stronger feature propagation and reuse.
This leads to a decrease in the number of features without
compromising on training and test accuracy.

The DenseNet architecture implemented for this project
contains 4 convolution layers in the dense block. The input
image is first convoluted and the output is feeded to all the
convolution layers in succession. This process is repeated

for all the convolution layers. The output is then finally
concatenated and through an activation layer it is sent on to
the fully connected layers. The loss over epochs, training and
test accuracy over epochs can be seen in the figs(51) and (??)

Fig. 48. Flow of the input inside the Dense block

Fig. 49. Flow of the input inside the Dense block as implemented

Parameter Value

Batch Size 32
Learning Rate 0.001
Optimizer Adam
Number of Epochs 50
Max test Accuracy(last epoch) 46.36%
No. of Parameters 1738714
Inference time(s) 0.1021696s

TABLE V
PARAMETERS AND RESULTS FOR DENSENET

Fig. 50. DenseNet architecture

Fig. 51. Training and Loss vs Epochs for DenseNet

Fig. 52. Test accuracy vs Epochs for DenseNet

Fig. 53. Confusion Matrix for test results for ResNext

E. Conclusion and Discussion: Phase 2

In this project we implemented different neural network
architectures on CIFAR-10 dataset to develop an image classi-
fier. The hyperparameters that were used to train each network
architecture are provided in a table format in each correspond-
ing subsection. The results and accuracy of each network is
provided in the corresponding subsection. A confusion matrix
displaying the predictions vs true labels can be seen in the
figs(35), (39), (43), (47) and (53). This concludes the results
obtained from training each neural network.

From the exercise of implementation of different types of
Neural Nets it has been observed that each architecture has its
own advantages and disadvantages. A simple CNN takes very
small time to train but the test results are not very accurate.
Theoretically it can be said that by making the CNN deeper
and deeper the accuracy of the network will improve, but it
is not the case. As we increase the number of convolution
layers the complexity of the network increases and after
a certain limit the accuracy of this network decreases.
This problem is called ”Overfitting” the data. To counter
this problem these different types of architectures were
formed. These new networks avoid the overfitting problem
in their own ways: by adding skip connections(ResNet),
by introducing Cardinality(ResNext) or by feed-forwarding
the input directly to every other layer in succession(DenseNet).

There is still a limit to the accuracy we can extract from such
models. All the architectures that were discussed above rely on
a supervised learning approach, in which there is an implicit
assumption that there is enough data to train these models.
The dataset given to us was a smaller version of the CIFAR-10
dataset. So, we applied techniques for data augmentation like
geometrically transforming the image, cropping etc to generate
more data so that the models could be trained better. But there
can’t ever be enough data. But adhering to the positives of
such models, they still produce better results in terms of image
classification than traditional image processing approaches.

REFERENCES

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik,
Contour Detection and Hierarchical Image SegmentationIEEE Trans.
Pattern Anal. Mach. Intell. 33, 5 (May 2011), 898-916 Knuth: Computers
and Typesetting,
http://dx.doi.org/10.1109/TPAMI.2010.161

[2] Gabor Filters.
https://en.wikipedia.org/wiki/Gaborf ilterHvaas −
Labs/Tensorflow − Turorials.
https://github.com/Hvass-Labs/TensorFlow-Tutorials

[3][3] Official Tensor Flow Turorials.
https://www.tensorflow.org/tutorials/images/deepcnn

[4] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le, Don’t
Decay the Learning Rate, Increase the Batch Size

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual
Learning for Image Recognition
https://dblp.org/rec/bib/journals/corr/HeZRS15

[6] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
Aggregated Residual Transformations for Deep Neural Networks
https://arxiv.org/abs/1611.05431

[7] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
Densely Connected Convolutional Networks
https://arxiv.org/abs/1608.06993

