
Homework 0 - Alohomora! Submission
Abhishek Kathpal

CMSC733
UID:114852373

Email: akathpal@umd.edu
USING 3 LATE DAYS

Abstract—This homework has two phases. Phase 1 is focussed
on implementation of pb (probability of boundary) algorithm
using the texture, brightness and color information combined
with the canny and sobel baselines. Phase 2 is implementation
of multiple deep learning architectures: ResNet, ResNeXt and
DenseNet on CIFAR10 Dataset. Few approaches for improving
train and test dataset accuracies are discussed and implemented.

I. PHASE1

A. Overview

The goal of this part of project is to compute the edges
in a given image. The traditional approaches for solving this
problem are Canny Edge and Sobel Edge Detector. Sobel
computes the differences in intensity accross neighboring
pixels after converting into grayscale image. A predined value
is used to find the edges sharper than that value in the image.
Canny determines whether pixel belongs to edge or not by
checking the similarity between the gradients at that pixel and
the neighboring pixels. Both of these algorithms only takes
change in intensity into account.

Pb Algorithm considers texture, brightness and color
changes to detect the per pixel probability of being a point
on edge in the image.

The pipeline is given by following figure:

Fig. 1. Pb Algorithm pipeline

The pb algorithm can be implemented using the following
steps: 1. Generating filter banks using Oriented DoG Filters,
Gabor Filters and Leung-Malik Filters. 2. Computing the

Texton Map using the filter bank and KMeans CLustering
3. Using Half-disc masks to compute the gradient maps of
texture, brightness and color. 4. Using the given Sobel and
Canny baselines to have a rough idea of edge. 5. Computing
the per pixel probability of pixel belonging to an edge in
image.

B. Filter Banks

Three filter banks-Gabor, DoG and Leung-Malik have been
used in this approach to detect textures in the given input
image. These filter banks have filters at different scales to
detect scale change and different orientations to compute
textures in different orientations. The output from these filter
banks are shown below:

Fig. 2. DoGFilterBank

Fig. 3. GaborFilterBank



Fig. 4. LMFilterBank

These filter banks are used to found the texton , brightness
and color maps. These maps for penguin image is shown in
figures below.

Fig. 5. TextonMap

Fig. 6. BrightnessMap

Fig. 7. ColorMap

C. Half Disc Masks

Half-Disc Masks are used to compute the gradients of the
computed texture, brightness and color maps. These will help
us compute the chi-square distances using less number of
computations. The half discs are shown below:



Fig. 8. HalfDiscMasks

These gradient maps will tell the change in distributions of
texture, brightness and color at a pixel. These are shown in
the figures below.

Fig. 9. TextonGradient

Fig. 10. BrightnessGradient

Fig. 11. ColorGradient

D. Pb-lite Output

To finally compute the output from the algorithm, the
following equations is used:

PbEdges =
Tg +Bg + Cg

3
.∗(w1∗Canny+w2∗Sobel) (1)

Sobel and Canny baselines shown are being used for comput-
ing the edges in the original image.



Fig. 12. CannyBaseline

Fig. 13. SobelBaseline
The final output is shown in the figure below:

Fig. 14. PbLiteOutput

E. Advantages

Pb output is much better in finding boundaries of objects
qualitatively. From the algorithmic point of view, this takes
into account the texture and color details into account as well
in comparison to just intensity changes in case of Sobel and
Canny. One downside of Pb lite is that if fails to detect the
edges if the edges are not in both canny and sobel baselines,
as this algorithm filter the poor pixel candidates for the edges.

II. PHASE2

1) Overview: In this part of project, the goal is to imple-
ment different deep learning architectures to classify differ-
ent objects based on CIFAR10 dataset. THe first task is to
choose loss function and optimizer function. Cross Entropy
with softmax is used a loss function, this is generally the
choice for classification tasks. I have used Adaptive Moment
Estimation(Adam). It is better than other optimizers like RMS
prop , Adagrad as Adam decaying average of past squared and
past gradients, it generally works better than other adaptive
learning- method based algorithms. In this Phase, I have
first implemented the basic CNN architectures using just
convolutional and fully connected layers. Then I studied the
architectures of ResNet, ResNext and DenseNet and tried to
implement these architectures to improve the accuracy. I was
only able to successfully execute ResNet architecture. The
architectures are explained in the section below.

2) Different Architectures: The first architecture is simple
CNN. I have used for this architecture 3 convolutional layers
with max pooling, batch normalization and 4 fully connected
layers. I was getting an accuracy of around 65% on Test
Dataset. I ran the code for 20 epochs with 64 batch size. In
the fig. below, the loss and accuracy per epoch are shown.

I have also plotted the confusion matrix heat map for the
Test Dataset.

Fig. 15. Accuracy plot vs Epochs



Fig. 16. Loss plot vs epochs

Fig. 17. Confusion Matrix

To improve the above results, another architectures have
been used. All of these architectures uses skip connections.
ResNet uses residual blcoks which helps in solving the prob-
lem of vanishing gradient. The architecture of ResNet is shown
in the figure.

Fig. 18. ResNet Architecture

I have implemented ResNet architecture with only 3 residual
blocks and few fully connected layers in the end with softmax
function. The accuracy and loss plot per epoch with this small
ResNet architecture is shown below:

Fig. 19. Accuracy plot vs Epochs



Fig. 20. Loss plot vs epochs

Another modified version of ResNet is ResNeXT archi-
tecture which introduced the concept of cardinality which
refers to how many times the input is split. I was not able to
implement this architecture. The architecture is shown below:

Fig. 21. ResNext Architecture

Dense Net architecture is shown below. In this architecture,
skip connections are used in different way, the output from
one layer is added to all the next layers output and feeded as
input.

Fig. 22. Dense Net Architecture

The comparison between the architecture of CNN, ResNet
and DenseNet is shown in fig. below

Fig. 23. Comparison

REFERENCES

[1] Arbelaez, Pablo, et al. ”Contour detection and hierarchical image segmen-
tation.” IEEE transactions on pattern analysis and machine intelligence
33.5 (2011): 898-916.

[2] http://cs.brown.edu/courses/cs143/2011/proj2/
[3] http://www.robots.ox.ac.uk/ vgg/research/texclass/filters.html
[4] He, Kaiming, et al. ”Deep residual learning for image recognition.”

Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

[5] https://github.com/taki0112/Densenet-Tensorflow
[6] Xie, Saining, et al. ”Aggregated residual transformations for deep neural

networks.” Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on. IEEE, 2017.


