
Homework 0 - Alohomora
CMSC 733

Ameya Patil
Department of Computer Science

University of Maryland
College Park, Maryland 20740

Email: ameyap@umd.edu

I. PHASE 1

The objective of the first phase is to implement the Pb-
Lite edge detection algorithm. ’Pb’ stands for probability of
boundary and accordingly gives the probability of each pixel
of an input image, belonging to a true edge in the image. The
algorithm is implemented in 4 steps:
A) Filtering the input image to get textures
B) Quantizing the per pixel texture, brightness and color

attributes
C) Finding the gradients of texture, brightness and color for

each pixel
D) Combining the result with the baseline Canny or Sobel

edge detection results
Following is a short description of each of the four steps:

A. Filtering the image

Filter banks were created with filters of different charac-
teristics and sizes with the aim of identifying edges in the
image. The filters have a particular type of impulse response
which enables them to do so. Textures are although repetitive
patterns of edges, they are not necessarily strong edges in an
image and can thus be falsely identified as edges. The process
of identifying textures from edges will be explained in I-B and
I-C

For this homework, 3 filter banks were created:
A) Derivative of Gaussian Filters
B) Leung-Malik Filters
C) Gabor Filters

All these filters have the gaussian function common among
them, with different values for the standard deviation (scale) σ
and different angles of rotation. Multiple scale values help in
detecting edges of different thicknesses, while multiple angles
of rotation help in detecting edges along different direction.
Each filter bank differs with respect to the modification applied
to the basic gaussian function.

1) Derivative of Gaussian: As the name suggests, this
filter bank has the first order derivative of the 2D gaussian
function. The first order derivative is computed by convolving
the gaussian kernel with the Sobel filter. Figure 1

2) Leung-Malik: This filter bank consists of 4 different
types of filters - the gaussian filter, first order derivative of
gaussian, second order derivative of gaussian and the laplacian

Fig. 1. Derivative of Gaussian Filter Bank - with 2 different scales and 16
different orientations for each scale

of gaussian. The derivative of gaussian filters have different
standard deviation along the X and Y axes giving the filter an
elongated shape. Further, these elongated filters are rotated
to have 8 different orientations. A fixed set of 4 standard
deviation values was used to create the filters and depending on
those fixed set of values, 2 LM filter banks were implemented
- LM Small and LM Large. Derivative of gaussian filters were
created only for the first 3 scale values of the set. Gaussian and
laplacian of gaussian were created for all the 4 scale values.

Fig. 2. LM Small filter bank having 48 filters. Top 3 rows show 8 different
orientations of the first and second derivative of gaussian. First 8 filters in the
last row are the laplacian of gaussian and the remaining 4 filters are gaussian
filters. Standard deviation values of 1,

√
2, 2 and 2

√
2 were used

Fig. 3. LM Large filter bank having 48 filters. Top 3 rows show 8 different
orientations of the first and second derivative of gaussian. First 8 filters in the
last row are the laplacian of gaussian and the remaining 4 filters are gaussian
filters. Standard deviation values of

√
2, 2, 2

√
2 and 4 were used



3) Gabor Filters: The gabor filter has a gaussian kernel
modulated with a sinusoidal plane kernel. The bank consists
of gabor filters having different standard deviation for the
gaussian and different frequency for the sinusoids, which are
further rotated to get different orientations. Gabor filters with
3 different standard deviation values and 2 different sinusoid
frequencies were implemented.

Fig. 4. Gabor filter bank having 8 different orientations (8 columns) for 3
different gaussian kernels and 2 different sinusoid kernels

B. Texture, Brightness and Color Maps

The next step is to get 2 different kinds of per-pixel map
for the input image. The texton map or the texture map
encodes the information of a certain pixel being a part of a
texture in the image. This is done by convolving the image
with the individual filters in the filter banks generated in
I-A. The brightness and color maps accordingly encode the
intensity and color values for each pixel. These maps are then
processed with dimensionality reduction operation to get a
lower dimension space for the maps. This is done using the k-
means clustering algorithm. For the texture map, convolution
was performed for all the 3 image channels - R,G,B. The color
maps were also generated for all the 3 image channels. In the
resulting texton and color maps, the 3 chanels were merged to
create an RGB image. Figures 5 and 6 show the corresponding
maps where the Derivative of Gaussian filter bank was used.

C. Finding Gradients of Texture, Brightness and Color Maps

The next step is to find the gradients of the texture, bright-
ness and color at each pixel. This step is executed efficiently
using half disk masks of varying sizes and orientations. Half
disk masks are a set of pairs of masks having a semicircular
disk centred at the centre of the mask, refer Figure 7. By
applying pairs of half disk masks at each pixel of the maps
generated in I-B via convolution, and computing the difference
between the results of left mask and right mask application,
we get a measure of the gradient of the attribute at the pixel.

(a) Texton, Brightness and Color Map for image 1.png

(b) Texton, Brightness and Color Map for image 2.png

(c) Texton, Brightness and Color Map for image 3.png

(d) Texton, Brightness and Color Map for image 4.png

(e) Texton, Brightness and Color Map for image 5.png

Fig. 5. Texture, Brightness anc Color Maps for Images 1 to 5

The difference between the left and right mask application is
calculated using the χ2 distance after binarizing the image over
all the quantization bins of the individual map. The resulting
gradient maps are shown in Figures 8 and 9

D. Combine with baselines

In the last step, the results obtained after finding the
texture gradients, brightness gradients and color gradients,
were combined with the Canny and Sobel baselines using
the Hadamard matrix product, with different weights for each
of the 5 components - texture gradient, brightness gradient,
color gradient, sobel baseline and canny baseline. The texture
gradient information scans for the existence of textures in
the image and acts as a weightage for the baseline results to
reduce the false negative edges in textures in the input image.
Final output is as shown in Fig 10

Why is Pb-Lite better than Sobel and Canny edge
detectors?
Pb-Lite algorithm gives control to the user as to how much
visibility should be given to texture edges in the final output
by changing the relative contribution of the texture gradient,
brightness gradient and the color gradient. This makes it more



(a) Texton, Brightness and Color Map for image 6.png

(b) Texton, Brightness and Color Map for image 7.png

(c) Texton, Brightness and Color Map for image 8.png

(d) Texton, Brightness and Color Map for image 9.png

(e) Texton, Brightness and Color Map for image 10.png

Fig. 6. Texture, Brightness anc Color Maps for Images 6 to 10

flexible and better compared to the Sobel and Canny edge
detectors which necessarily use the derivative operator on
images to find all kind of intensity and/or color changes.

II. PHASE 2

The first task in phase 2 is about creating a convolutional
network for image classification on the CIFAR-10 dataset.
First, a simple convolutional network was created with 2 con-
volution layers having a ReLU activation function, followed
by 2 fully connected layers and finally a softmax layer, as
shown in image 11. The softmax cross entropy loss function
was used on the network logits and it was optimized using
the Adam optimizer. The network was trained for 10 epochs.
This network is being referred to as the ’first’ network in the
succeeding text.

Network architecture:
Optimizer: Adam Optimizer

Fig. 7. Half Disk masks having 3 different sizes and 8 different orientations.
First 3 rows show the first of the pairs while the last 3 rows show the
corresponding second of the pairs

Class 0 1 2 3 4 5 6 7 8 9
0 4846 12 54 19 11 12 1 2 25 18
1 17 4889 4 17 2 1 4 2 11 53
2 55 6 4771 64 19 48 13 12 5 7
3 12 5 50 4708 16 164 16 12 13 4
4 59 7 179 90 4500 59 24 64 11 7
5 6 2 48 161 20 4661 24 67 3 8
6 13 17 92 218 48 67 4510 10 7 18
7 26 2 50 54 29 44 1 4772 1 21
8 84 16 22 24 4 2 1 0 4839 8
9 22 117 8 28 3 8 2 15 20 4777

TABLE I
CONFUSION MATRIX FOR THE ’FIRST’ NETWORK ON TRAINING DATASET

AFTER 10 EPOCHS

Learning Rate: 0.0001
Batch Size: 1 for all the epochs
Number of parameters in the model: 50451690

The per epoch loss and accuracy on train and test dataset
is provided in Figure 12. The confusion matrices for ’first’
network on train and test data after 10 epochs are at Tables I
and II. Inference time on train dataset (50000 images) was 13
min 48 sec and that on the test dataset was 2 min 16 sec.

Enhanced Network - 3.4 A newer version of the same
network was created with a few enhancements, referred to as

Class 0 1 2 3 4 5 6 7 8 9
0 655 27 103 53 15 10 10 11 72 44
1 36 705 10 31 6 11 6 6 45 144
2 93 9 443 132 85 108 51 45 18 16
3 34 25 107 439 58 210 40 50 8 29
4 37 11 180 135 372 72 63 109 13 8
5 21 11 96 257 54 421 37 83 8 13
6 25 16 92 183 71 62 492 25 17 17
7 31 16 59 98 65 81 11 591 7 41
8 119 50 20 45 12 3 7 6 690 48
9 62 183 11 49 7 11 6 20 40 611

TABLE II
CONFUSION MATRIX FOR THE ’FIRST’ NETWORK ON TEST DATASET

AFTER 10 EPOCHS



(a) Texture, Brightness and Color Gradients for image 1.png

(b) Texture, Brightness and Color Gradients for image 2.png

(c) Texture, Brightness and Color Gradients for image 3.png

(d) Texture, Brightness and Color Gradients for image 4.png

(e) Texture, Brightness and Color Gradients for image 5.png

Fig. 8. Texture, Brightness and Color Gradients for Images 1 to 5

the ’enhanced’ network in the succeeding text. The input data
batch was standardized by mapping the pixel values between
-1 and 1. This helped in ensuring that the ReLU activation did
actually introduce some non-linearity in the system, otherwise
if all the pixel values are between 0 and 255, the ReLU
activation would not have much effect on the network output.
Further, batch normalization layers were added to each of
convolution layers in the network before applying the ReLU
activation. The idea behind batch normalization is to reduce
the internal covariate shift of the data being passed from one
convolution layer to the next. This helps in faster convergence
as the learning rate can be increased, because the parameters
in each network only need to be adjusted slightly to accom-
modate the activations for different inputs. In the presence
of internal covariate shift, the parameters in each layer might
need huge modifications for every forward pass, thus needing
low learning rate. The network was trained for 10 epochs and
the batch size was increased by 100 after every 3 epochs.
Increasing the batch size after a few epochs helps in reaching
convergence faster as updates to the parameters are not made
for each sample but are aggregated over a batch of samples.

Network architecture:

(a) Texture, Brightness and Color Gradients for image 6.png

(b) Texture, Brightness and Color Gradients for image 7.png

(c) Texture, Brightness and Color Gradients for image 8.png

(d) Texture, Brightness and Color Gradients for image 9.png

(e) Texture, Brightness and Color Gradients for image 10.png

Fig. 9. Texture, Brightness and Color Gradients for Images 6 to 10

Optimizer: Adam Optimizer
Learning Rate: 0.0001
Batch Size: 1 for first epoch, then multiples of 100 for next
3 epochs and so on
Number of parameters in the model: 50452634

The per epoch loss and accuracy on train and test dataset
is provided in Figure 13. The confusion matrices for the
’enhanced’ network on train and test data after 15 epochs are
at Tables III and IV. Inference time on train dataset (50000
images) was 4 min 37 sec and that on the test dataset was 55
sec.

Next, new modifications were attempted with the network.
This included the ResNet architecture, the ResNeXt architec-
ture and the DenseNet architecture.

ResNet
For the ResNet architecture, the 2 convolution layers in the



(a) PbLite outputs for images 1 to 3

(b) PbLite outputs for images 4 to 6

(c) PbLite outputs for images 7 to 9

(d) PbLite output for image 10

Fig. 10. PbLite outputs for images 1 to 10

Fig. 11. ’First’ Network schematic

’first’ network were also accompanied by 1 skip connection as
shown in Figure 14. This implementation is not a full-fledged
replication of the ResNeXt architecture, but just a toy model.

Fig. 12. Per epoch loss and accuracy on train and test dataset for ’first’
network, after 10 epochs

Fig. 13. Results for enhanced network. The loss value dropped below 1000
units after the first epoch itself

The network was trained for 15 epochs.
Network architecture:

Optimizer: Adam Optimizer
Learning Rate: 0.0001
Batch Size: 1 for first epoch, then (epochnumber/3 + 1) * 100
Number of parameters in the model: 50453786

The per epoch loss and accuracy on train and test dataset
is provided in Figure 15. The confusion matrices for ResNet
on train and test data after 15 epochs are at Tables V and VI

ResNeXt
For the ResNeXt architecture, the input image batch was
split among 2 different low dimensional sub-parts, here the
cardinality parameter of the network was fixed to 2. Both
these sub-parts were transformed by passing them through 2
different convolution layers and the results of the layers from



Class 0 1 2 3 4 5 6 7 8 9
0 3121 376 154 5 4 0 111 0 155 1074
1 6 2465 258 479 1 4 237 0 334 1216
2 15 468 3320 104 6 5 87 166 0 829
3 13 651 167 2899 6 8 171 0 182 903
4 1 602 100 2 3355 3 62 0 122 753
5 11 586 102 8 6 3080 120 7 200 880
6 9 599 88 2 3 72 3427 11 99 690
7 30 829 232 6 1 87 2808 211 796 0
8 4 481 180 4 4 216 0 252 2378 1481
9 20 448 648 2 3 204 0 309 872 2494

TABLE III
CONFUSION MATRIX FOR ’ENHANCED’ NETWORK ON TRAINING DATASET

AFTER 15 EPOCHS

Class 0 1 2 3 4 5 6 7 8 9
0 634 92 22 0 0 1 25 0 24 202
1 2 494 47 87 0 0 57 0 70 243
2 0 90 685 20 1 3 15 0 34 152
3 2 133 26 598 0 2 28 0 41 170
4 1 109 13 0 666 1 14 0 23 173
5 1 110 18 2 1 643 25 0 38 162
6 1 149 17 12 0 0 678 0 23 120
7 4 157 54 0 0 1 24 556 32 172
8 2 89 50 46 0 1 46 0 450 316
9 1 97 128 188 0 0 34 0 60 492

TABLE IV
CONFUSION MATRIX FOR ’ENHANCED’ NETWORK ON TEST DATASET

AFTER 15 EPOCHS

Fig. 14. ResNet schematic

Class 0 1 2 3 4 5 6 7 8 9
0 4644 2 1 2 0 4 0 0 1 346
1 1827 1833 1 15 0 37 0 6 1 1280
2 3510 76 262 104 0 291 5 14 5 733
3 2301 76 6 969 1 472 2 19 14 1140
4 3719 64 17 171 21 209 8 12 2 777
5 1756 39 7 112 0 2488 2 13 1 582
6 2982 188 8 142 0 328 251 6 6 1089
7 2036 91 7 89 0 357 1 711 2 1706
8 2935 33 0 17 1 14 0 4 208 1788
9 537 20 1 4 0 15 0 1 0 4422

TABLE V
CONFUSION MATRIX FOR RESNET ON TRAINING DATASET AFTER 15

EPOCHS

Fig. 15. Per epoch loss and accuracy on train and test dataset for ResNet,
after 15 epochs. The per epoch loss dropped below 1000 units immediately
after the first epoch

Class 0 1 2 3 4 5 6 7 8 9
0 872 5 1 3 0 4 0 1 0 114
1 410 275 0 2 0 11 1 4 0 297
2 664 12 21 32 0 89 2 6 1 173
3 474 27 5 103 0 157 1 3 2 128
4 710 9 2 51 1 50 3 2 0 172
5 413 13 1 52 0 380 2 4 0 135
6 592 30 5 37 0 72 40 2 3 219
7 431 13 0 19 0 90 0 110 1 336
8 591 12 4 4 0 3 0 0 35 351
9 177 21 1 0 0 15 1 1 1 183

TABLE VI
CONFUSION MATRIX FOR RESNET ON TEST DATASET AFTER 15 EPOCHS

both the sub-parts were merged. This split-transform-merge
graph was also accompanied by a skip connection, refer Figure
16. This implementation is not a full-fledged replication of the
ResNeXt architecture, but just a toy model.

Network architecture:
Optimizer: Adam Optimizer
Learning Rate: 0.0001
Batch Size: 1 for first epoch, then (epochnumber/3 + 1) * 100
Number of parameters in the model: 50571434

The per epoch loss and accuracy on train and test dataset is
provided in Figure 17. The confusion matrices for ResNeXt
on train and test data after 10 epochs are at Tables VII and
VIII. Inference time on train dataset (50000 images) was 4
min 43 sec and that on the test dataset was 57 sec.

DenseNet
In the final modification, the enhanced network was added
with 4 more convolution layers to give a total of 6 convolution
layers. 3 of these layers have the same number of input and
output channels while the other layers have the same number
of input and output channels different from the first 3 layers.
Each of the 3 layers was connected to all its subsequent
networks of the same input size, thus yielding 7 connections in



Fig. 16. ResNeXt schematic

Fig. 17. Per epoch loss and accuracy on train and test dataset for ResNeXt,
after 10 epochs. The per epoch loss dropped below 1000 units immediately
after the first epoch

6 networks, which in the normal scenario would have been 5
connections only, as shown in Figure 18. This implementation
is not a full-fledged replication of the DenseNet architecture,
but just a toy model.

Network architecture:

Class 0 1 2 3 4 5 6 7 8 9
0 4761 2 1 1 0 4 0 131 8 92
1 3146 950 1 8 0 24 0 247 39 585
2 4218 27 164 83 0 174 0 165 19 150
3 3136 72 13 511 0 569 0 178 40 481
4 4273 26 8 73 0 209 2 191 13 205
5 2636 43 20 168 0 1661 0 165 11 296
6 3935 140 2 103 0 431 34 67 18 270
7 2515 52 7 77 0 196 0 1769 8 376
8 3585 12 3 5 0 3 0 340 747 305
9 1801 40 1 6 0 27 0 377 28 2720

TABLE VII
CONFUSION MATRIX FOR RESNEXT ON TRAINING DATASET AFTER 10

EPOCHS

Class 0 1 2 3 4 5 6 7 8 9
0 935 3 1 0 0 1 0 30 3 27
1 641 157 0 1 0 4 0 47 9 141
2 846 4 19 17 0 42 0 32 8 32
3 611 16 7 69 0 147 0 37 3 110
4 836 7 2 24 0 42 0 36 3 50
5 573 10 4 45 0 277 0 38 3 50
6 783 23 1 20 0 101 3 10 4 55
7 515 7 3 7 0 47 0 324 3 94
8 705 4 1 3 0 5 0 69 136 77
9 431 20 0 0 0 8 0 90 2 449

TABLE VIII
CONFUSION MATRIX FOR RESNEXT ON TEST DATASET AFTER 10 EPOCHS

Class 0 1 2 3 4 5 6 7 8 9
0 1947 2149 888 2 0 0 0 13 1 0
1 1618 3118 249 1 0 2 0 11 0 1
2 1013 3506 434 2 0 6 0 36 3 0
3 1268 3514 120 20 0 9 0 67 1 1
4 869 3933 151 0 0 4 0 43 0 0
5 1302 3491 134 3 0 20 0 47 3 0
6 781 4141 56 0 0 3 0 19 0 0
7 1994 2616 134 0 0 7 0 248 1 0
8 1660 2328 985 0 0 4 0 16 6 1
9 2110 2519 313 0 0 7 0 45 0 6

TABLE IX
CONFUSION MATRIX FOR DENSENET ON TRAINING DATASET AFTER 10

EPOCHS

Optimizer: Adam Optimizer
Learning Rate: 0.0001
Batch Size: 1 for first epoch, then multiples of 100 for next
3 epochs and so on
Number of parameters in the model: ??

Fig. 18. DenseNet schematic

The per epoch loss and accuracy on train and test dataset is
provided in Figure 19. The confusion matrices for DenseNet
on train and test data after 15 epochs are at Tables IX and X.
Inference time on train dataset (50000 images) was 1 min 9
sec and that on the test dataset was 14 sec.

Ideally, the ResNet, ResNeXt and DenseNet architectures
are better in terms of faster convergence than the ’first’



Fig. 19. Per epoch loss and accuracy on train and test dataset for ’DenseNet’
after 15 epochs

Class 0 1 2 3 4 5 6 7 8 9
0 342 446 211 0 0 0 0 1 0 0
1 348 595 55 0 0 0 0 1 0 1
2 203 699 82 0 0 3 0 12 1 0
3 277 688 20 1 0 4 0 9 1 0
4 191 770 28 0 0 0 0 11 0 0
5 263 701 19 2 0 1 0 14 0 0
6 162 825 7 1 0 0 0 5 0 0
7 448 480 19 0 0 1 0 52 0 0
8 354 457 177 1 0 3 0 3 5 0
9 397 541 53 0 0 0 0 9 0 0

TABLE X
CONFUSION MATRIX FOR DENSENET ON TEST DATASET AFTER 10

EPOCHS

network, but since the versions of ResNet, ResNeXt and
DenseNet implemented here were toy versions, that could be
the reason why the results were not as expected.

REFERENCES

1) https://github.com/tensorflow/models/blob/master/official
/resnet/resnetmodel.py

2) https://www.cs.cornell.edu/courses/cs6670/2011sp/
lectures/lec02filter.pdf

3) http://cs.brown.edu/courses/cs143/2011/proj2/


