
Homework 0 - Alohomora!
Prateek Arora

Robotics Graduate Student
University of Maryland

Email: pratique@terpmail.umd.edu
USING 3 LATE DAYS

Abstract—The purpose of the homework is to learn Classical
and Deep Learning approaches in computer vision. The
homework is divided into two phases, namely Phase 1 and
Phase 2. Phase 1 focuses on Boundary detection using traditional
techniques while Phase 2 is about implementing multiple neural
and comparing them on various criterion like number of
parameters, train and test set accuracy.

I. INTRODUCTION

Edge detection is a classic problem in computer vision and
a fundamental tool for many algorithms. The goal of such
algorithms is to find all relevant discontinuities in an image.
Because what constitutes a relevant discontinuity can vary
highly among even humans, edge detection is considered to
be a difficult problem.

The most naive method of solving this problem (Sobel)
involves generating an intensity (i.e. grayscale) map from the
original image, and computing differences in intensity across
neighboring pixels. By cutting these values off at a predefined
constant, this algorithm finds all edges sharper than that value.
A slightly smarter version (Canny) attempts to decide which
pixels comprise edges by checking whether the gradient at that
pixel is similar to gradients at neighboring pixels. However,
these two algorithms only consider changes in intensity, and
fail to consider changes in texture.

In this project, we will attempt to beat these naive
algorithms using pb-lite. In addition to considering intensity,
we will also consider changes in texture and brightness in
the local neighborhood. Using all of this information, we will
assign to each pixel a probability that it lies on an edge.

II. PHASE 1: SHAKE MY BOUNDARY

The task in this phase is to perform boundary detection
using an algorithm called ”PB-Lite”. The goal of Phase 1,
as stated before, is to find all relevant discontinuities in an
image. Because what constitutes a relevant discontinuity can
vary highly among even humans, edge detection is considered
to be a difficult problem. The block diagram of the algorithm
in the figure 1. The first step in this process is to filter the
image and find a texton map which is essentially the texture
map of the image. This is computed by clustering the filter
responses with K-Means clustering.

Filtering is used to access the low level features in the
image. This helps us to measure and aggregate the regional
texture, brightness and color properties. Different scales and

Figure 1. Block diagram of PB-Lite Algorithm

orientations of a particular filter are used so that various types
of textures can be addressed. Here, we have used three filter
banks namely: Oriented DoG filters, Leung-Malik Filters and
Gabor Filters.

A. Oriented DoG Filters

The Oriented Difference of Gaussian Filter is generated by
taking the difference of two normal Gaussian Filters with same
variance but the centers are of each is shifted by an amount
equal to the standard deviation. This filter can also be created
by convolving a simple Sobel Filter and a Gaussian kernel. The
figure 2 shows the gaussian filter bank used for generating the
results shown in the future sections.

The filter bank is generated by using 5 different scale values
and 15 orientations for each scale, linearly-spaced from 0 deg
to 360 deg. Hence, the total number of filters is 5 ∗ 16 = 80.

B. Leung-Malik Filters

The Leung-Malik filter bank is a collection 48 filters with
multiple scales and orientations. It consists of first and second
order derivatives of Gaussians, Laplacian of Gaussian(LOG)
filters and 4 Gaussian filters. All these filters account for
different types of features in the image. The filter bank is
shown in the figure (3)

C. Gabor Filters

Gabor filters are inspired based on the way human visual
system. A Gabor filter is generated by modulating a gaussian



Figure 2. DoG Filter Bank

Figure 3. LM filter bank

kernel with a sinusoidal plane wave. This is a linear filter that
basically analyses if there is any specific frequency(governed
by λ) content in the image in specific directions around the
point of interest. The Gabor filterbank used in this project is
shown in the figure(4) The filter bank with is generated for
λ=1 with three scales:[9,16,25]. Also, for each scale value, 15
filters with different orientations, uniformly spaced from 0 to
360 degrees are generated.

Figure 4. Gabor filter bank

D. Texton Map T
Once the filtering process of the image is complete, we

end up with a stack of images of size m × n × N , where
m,n are the dimensions of the image and N is the total
number of filters used. Thus, each pixel value can now
be represented as a distribution of these N values. Each
distribution is then represented by a unique Texton-ID. These
different distributions for all the pixels are then clustered into
K textons using K-Means. This generates an image which
captures the texture changes in the original image. Texton
Maps for all the test set images be seen in the following
figures:

E. Brightness Map B
The Brightness map captures the changes in intensity of

light in the image. Similar to Texton map generation the
K-Means clustering of the grayscale image is performed for
K=16 and the output can be seen in the Phase-1 result section

F. Color Map C
The Color map captures the changes in color/ chrominance

in the image. The color values were clustered using K-Means
clustering into 16 clusters. This generates an output image
which can be seen Phase-1 result section

G. Gradient Maps

The Maps generated above are used to calculate gradient
maps Tg ,Bg and Cg . These maps encode the texture, brightness
and color distributions changing at each pixel. These are
generated by comparing the values at each pixel by convolving
the image with a left/right half-disc pair centered at the pixel.



The basic concept behind this is that if the values are similar
the gradient should be small and if the values are dissimilar,
the gradient will be large.

The half-disks are generated by multiplying an array of
size equal to the radius/scale of the circular disk with all
values which lie inside this radius equal to 1 and rest 0, with
an array of equal size but where one half of the array is 0s
and the other half consists of 1s. This multiplication results
in a half-disk which can be rotated to produce the desired
half-disk mask.

Here if you rotate the disk after you’ve multiplied the two
arrays will result in pixel voids. This can be avoided by
rotating the rectangular block matrix of 0s and 1s and then
by applying a ”logical OR” operator on them. This gives
the required half-disk masks which are shown Phase-1 result
section

Figure 5. Half-Disk Masks for scales=[5,20,50]

Using the above generated Half-Disk masks we compute
the Tg,Bg and Cg maps by comparing the distributions
generated using each half-disk pair with a χ2 measure.
The binning scheme is defined for K indexes which is
equal to the number of K-Means clusters for each Tg ,
Bg ,Cg . This procedure is repeated for all the half-disk pairs
to generate a 3D matrix of size m × n × N where m,n
are the dimensions of the image and N is the number of filters.

The output of the mean of each Tg,Bg and Cg is given as
follows:

H. PB-Lite Output

Finally, the gradient maps generated are combined with
Canny and Sobel baselines using the equation:

PbEdges =
(Tg + Bg + Cg)

3
�(w1∗cannyPb+w2∗sobelPb)

(1)
The � is the Hadamard operator which is the element-wise
multiplication of the arrays in the equation. The choice of
the weights w1 and w2 is based on the Canny and Sobel
baselines and the features we want from each baseline. The
only constraint is that w1 + w2 = 1. The Canny and Sobel
outputs and the resulting Pb-lite outputs are shown in the
figures?? in the Phase-1 result section:

I. PHASE 2: Deep Dive on Deep Learning

1) Simple Convolution Neural Network: A Simple
Convolution Neural Network comprises of convolution layers
and fully connected layers. There are very deep layered
architecture implemented for classification on CIFAR10
dataset but the architecture implemented in this section
comprises of 4 convolution with different numbers of filters
followed by two fully connected layers. While training
this model no data augmentation or standardization was
performed. On training the network 96.3% training accuracy
is achieved in 25 epoch. Although the training accuracy is
high, the test accuracy reached 64.23% only.
Inference:The reason for high training accuracy and low
test accuracy is probably that the network is over-fitting the
data and thus fails to classify previously unseen images. To
get high test accuracy data augmentation and standardization
needs to be performed which is explained in the next section.

2) Improving accuracy: : In this network we try to improve
the accuracy of the previous network by first standardizing
the dataset within values [-1,1]. Next we also try to apply
data augmentation techniques wherein we do random noise
addition as well random left and right image rotation.
To increase the complexity of the network we add more
convolution layers followed by batch normalization. This is
shown in Fig.8. We get considerable improvement in the test
accuracy as the accuracy improves over the previous model
with a maximum of 72.03%

3) ResNet: : We keep the standardization and data
augmentation as it is and implement the ResNet architecture. A
Residual Network, or ResNet is a neural network architecture
which solves the problem of vanishing gradients in the
simplest way possible that is by applying skip connections
in a general residual block as shown in fig 11. This allows
the network to accommodate deep layers without having
the vanishing gradient problem. This network has a slight
improvement from the previous network with an accuracy
of 73.98% in the test set. We use 25 deep layers in the
ResNet architecture. Without the skip connections, a ’plain’
architecture with 25 deep layers would not allow us to have
lower losses as epochs increase.



Figure 6. Serially from top left image: (a) Training set accuracy and
loss, (b)Test set accuracy,(c) Network Architecture, (d) Confusion matrix for
Simple CNN without data augmentation and standardization

J. ResNeXt

ResNext architecture is an improvement over the ResNet
architecture. In addition to utilizing the concept of residual
learning framework from ResNet, the concept of cardinality is
introduced in this network. Cardinality is the size of the set
of transformations (as shown in II-J). In ResNext architecture,
the output, a[l], of layer, ’l’ much deeper into the network
before applying the non-linearity (Relu). Such multiple blocks
are added in parallel and the number of parallel units is
equal to cardinality. The Output of the parallel units is then
summed up followed by application of non-linearity. It is
empirically shown in the paper that even under the restricted
condition of maintaining complexity, increasing cardinality is
able to improve classification accuracy. Moreover, increasing
cardinality is more effective than going deeper or wider
when we increase the capacity. ResNeXt implemented in this
homework has two different parallely connected blocks with
cardinality 8 and 4 respectively. Both the blocks have three
filters and have a convolution layer with 128 filters in between
to connect them.

K. DenseNet

Previous networks have shown that that convolutional
networks can be substantially deeper, more accurate, and
efficient to train if they contain shorter connections between
layers close to the input and those close to the output.

Figure 7. Serially from top left image: (a) Training set accuracy and
loss, (b)Test set accuracy,(c) Network Architecture, (d) Confusion matrix for
Simple CNN with data augementation

In DenseNet each layer connects to every other layer in a
feed-forward fashion. DenseNets have several advantages: they
alleviate the vanishing-gradient problem, strengthen feature
propagation, encourage feature reuse, and substantially reduce
the number of parameters. In my implementation, an image
is passed through a single convolution layer followed by a
DenseNet block comprising of 5 convolution layers.



Figure 8. Serially from top left image: (a) Training set accuracy and
loss, (b)Test set accuracy,(c) Network Architecture, (d) Confusion matrix for
ResNet architecture

Figure 9. ResNeXt block diagram

III. PHASE-2 RESULTS

Figure 10. Serially from top left image: (a) Training set accuracy and
loss, (b)Test set accuracy,(c) Network Architecture, (d) Confusion matrix for
ResNeXt architecture

Figure 11. DenseNet block diagram

IV. CONCLUSION

In this homework we implemented Pb-lite algorithm to
detect boundaries and different neural network architectures
on CIFAR-10 dataset to develop an image classifier. For
phase 1 the results are shown in the section titles ”Phase-1
results” . The networks were trained and the results have
been shown in the table V provided in the corresponding
subsection. A confusion matrix displaying the predictions
vs true labels has been provided to analyse false positives.
From the exercise of implementation of different types of
Neural Nets it has been observed that each architecture has
its own pros and cons. A simple CNN takes very small
time to train but the test results are not very accurate. In
theory it can be said that by making the CNN deeper and
deeper the accuracy of the network will improve, but this
is not the case. As per the results the simple CNN trained
on standardized and augmented data performed the best and
got an accuracy of 70.4%. Also ResNet performed better than
ResNeXt and DenseNet. DenseNet and ResNeXt have more



Figure 12. Serially from top left image: (a) Training set accuracy and
loss, (b)Test set accuracy,(c) Network Architecture, (d) Confusion matrix for
DenseNet architecture

features packed in reletively shallow network than ResNet
and simple CNN. ResNeXt and DenseNet could provide more
accuracy,according to the results show in respective paper, if
they are trained for more epoch

REFERENCES

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik,
Contour Detection and Hierarchical Image SegmentationIEEE Trans.
Pattern Anal. Mach. Intell. 33, 5 (May 2011), 898-916 Knuth: Computers
and Typesetting,
http://dx.doi.org/10.1109/TPAMI.2010.161

[2] Gabor Filters.
https://en.wikipedia.org/wiki/Gaborf ilterHvaas −
Labs/Tensorflow − Turorials.
https://github.com/Hvass-Labs/TensorFlow-Tutorials

[3][3] Official Tensor Flow Turorials.
https://www.tensorflow.org/tutorials/images/deepcnn

[4] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le, Don’t
Decay the Learning Rate, Increase the Batch Size

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual
Learning for Image Recognition
https://dblp.org/rec/bib/journals/corr/HeZRS15

[6] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
Aggregated Residual Transformations for Deep Neural Networks
https://arxiv.org/abs/1611.05431

[7] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
Densely Connected Convolutional Networks
https://arxiv.org/abs/1608.06993

V. PHASE-1 RESULTS

Figure 13. From left to right: (a)Test image (b)Pb-lite Output

Figure 14. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 1

Figure 15. from left to right: (a)Sobel Baseline, (b)Canny Baseline



Figure 16. From left to right: (a)Test image (b)Pb-lite Output

Figure 17. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 2

Figure 18. from left to right: (a)Sobel Baseline, (b)Canny Baseline

Figure 19. From left to right: (a)Test image (b)Pb-lite Output

Figure 20. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 3

Figure 21. From left to right: (a)Test image (b)Pb-lite Output



Figure 22. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 4

Figure 23. From left to right: (a)Test image (b)Pb-lite Output

Figure 24. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 5

Figure 25. From left to right: (a)Test image (b)Pb-lite Output



Figure 26. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 6

Figure 27. From left to right: (a)Test image (b)Pb-lite Output

Figure 28. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 7

Figure 29. From left to right: (a)Test image (b)Pb-lite Output



Figure 30. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 8

Figure 31. From left to right: (a)Test image (b)Pb-lite Output

Figure 32. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 9

Figure 33. From left to right: (a)Test image (b)Pb-lite Output



Figure 34. Serially from top left image: (a) Texton Map, (b) Texton
gradient,(d) Brightness Map, (d) Brightness gradient, (e) Color Map and (f)
Color gradient for test image 10



Architecture Optimizer Learning rate Batchsize Epochs Train Accuracy Test Accuracy #Images #Parameters Avg. testing time
Simple CNN (w/ data augmentation) Adam 1e-3 128 25 96.3% 64.23% 50000 2500874 16.01 s
Simple CNN (w/ data augmentation) Adam 1e-3 128 75 73.18% 70.4% 500000 2500874 18.08 s
ResNet Adam 1e-3 128 25 65.62% 67.27% 500000 409066 23.01 s
ResNeXt Adam 1e-3 128 25 50.76% 51.36% 500000 86314 57.92 s
DenseNet Adam 1e-3 128 25 62.4% 43.32% 500000 1738714 73.3 s


	Introduction
	PHASE 1: SHAKE MY BOUNDARY
	Oriented DoG Filters
	Leung-Malik Filters
	Gabor Filters
	Texton Map T
	Brightness Map B
	Color Map C
	Gradient Maps
	PB-Lite Output
	PHASE 2: Deep Dive on Deep Learning
	Simple Convolution Neural Network
	Improving accuracy
	ResNet

	ResNeXt
	DenseNet

	Phase-2 results
	Conclusion
	References
	Phase-1 Results

