
Homework 0 - Alohomora!
Report

Sigurthor Bjorgvinsson
Department of Computer Science

University of Maryland
College Park, Maryland 20740

I. INTRODUCTION

In this project, we touched on boundary detection and deep
learning. In Section II I will describe the steps taken to
implement a simplified version of the Pb algorithm[1] and
in section III I will describe the first network I created, how
I improved it and how I introduced ideas from ResNet[3],
ResNeXt[4] and DenseNet[5] into my model. I will then
end with a comparison between the four different networks
implemented.

II. PHASE 1: SHAKE MY BOUNDARY

In this section I will describe my attempt at implementing
the Pb-Lite boundary detection algorithm along with few extra
filters. Finally I end this section with discussion about how to
execute my code.

A. Derivative of Gaussian (DoG) Filter Bank

To created the DoG Filter Bank, I needed to create a
gaussian matrix. In later filters, I needed to have seperate σx
and σy values so my gaussian function used the following
equation

Mx,y =
1

2πσxσy
e
(x

2

2σ2x
+ y2

2σ2yi
)

(1)

To get the derivative of the gaussian matrix, I convolved
gradient matrices shown below with the 2d Gaussian Matrix
generated with equation 1 where σx and σy were the same.−1 0 +1

−2 0 +2
−1 0 +1

−1 −2 −1
0 0 0
+1 +2 +1


When these matrices are convolved, with zero padding, with
the Gaussian matrix, the output are two matrices that are the
gradient Gx and Gy respectively. This gradient is a close
estimate of the derivative of the Gaussian function. I started
out with the derived function of the Gaussian equation but in
later filters I was having issues introducing the σx and σy so
this approach was selected.

The rotation of the filters is performed by using equation 2

F = cos(rad) ∗Gx + sin(rad) ∗Gy (2)

Fig. 1. DoG Filter Bank

The size (kSize x kSize) of the filters are selected by the
following equation to make sure that most of distribution is
included in the filter:

kSize = dσ ∗ 6e+ 1
if kSize%2 == 0 :
kSize+ = 1

(3)

Example filters are shown in figure 1. If the size of the filter
is smaller than other filters in the image, the smaller filters
are padded with white background. When the images were
resized or extended, the differences between the filters was
not apparent which lead to this decision.

B. Leung-Malik (LM) Filter Bank

The LM Filter Bank includes 4 sets of filters which I
will describe in this section. For the Gaussian derivatives, the
sigmas used in the LM smaller, figure 2 are σ = {1,

√
2, 2}

and in the LM Larger, figure 3 are σ = {
√
2, 2, 2

√
2}.

Derivatives are rotate in 6 different orientations split over 180°.
A issue occured when I needed to rate these morphed

Gaussian distribution filters. Equation 2 did not work for
the derivatives in this bank so a function was implemented
using the openCV rotate functionality. This resulted in some
smudges but I was unable to find another way.

1) First Derivative Gaussian: The first set(first 3 rows
on the left) is the first derivative of a morphed Gaussian
distribution. These filters are similar to DoG filters, except
that they are stretched in one direction. Here the separate σ
values in equation 1 comes in and the σy is set to 3 ∗ σx.
Convolution to get the Gy is applied once with zero padding
to preserve the filter size.

2) Second Derivative Gaussian: The second set (first 3
rows on the right) is the second derivative of the same
Gaussian distribution as above. Here, the matrix used to get
Gy is convolved twice to get the second derivative.

3) Laplacian of Gaussian (LoG): The LoG filters are the
third set (left most 8 filters in the last row). These filters

Fig. 2. LM Filter Bank Small

Fig. 3. LM Filter Bank Large

are generated by convolving the following matrix, without
padding, to a Gaussian distribution matrix: 0 −1 0

−1 4 −1
0 −1 0


The reason why the convolution was done without padding

was that the edges would of the output matrix would be wrong
because it detects an edge. This edge is only there because of
the zero padding which cuts the small numbers on the edges.

Another filter was tested with all -1 around a centered 8
but that filter provided filters further from the examples which
lead to the decision of using the 4 centered.

These filters were generated with these σ = {1,
√
2, 2, 2

√
2}

and 3σ for LM small and σ = {
√
2, 2, 2

√
2, 4} and 3σ for LM

large
4) Gaussian: These filters are just simple Gaussian filters

generated with the same σ using the gaussian equation 1.
These filters were generated with these σ = {1,

√
2, 2, 2

√
2}

for LM small and σ = {
√
2, 2, 2

√
2, 4} for LM large.

C. Gabor Filter Bank

The Gabor filters are generated with a Gaussian distribution
with is modulated by a sinusoidal plane wave. The filter size
was preset so that the filters could occupy the entire filter size
so they do not use equation 3. To generate these filters, there
is an equation that takes 5 variables. These variables are σ, θ,
λ, psi and γ. The way that I understand these variables are
the following. σ is the standard deviation, θ is the rotation, λ
is the wave length, psi is the offset and γ is the offset of the
filter in terms of width. Figure 4 shows the generated filters
filter size of 13 and 6 orientations of 360°. Gamma was not
used but the σ, θ, psi pairs used were

{(2.0, 1.5, 0.0), (3.0, 3.0, 0.0), (4.0, 4.5, 0.0), (5.0, 7.0, 0.0),
(7.5, 10.0, 0.0), (7.5, 10.0, 15.0)}

Fig. 4. Gabor Filter Bank

where the last change in psi was to invert the wave or shift it
so that it seems inverted.

D. Maps

In this subsection I will discuss how the Texton map,
Brightness map and Color map was generate and clustered.
The texton map is generated after convolving some of the
filters selected from the banks above and then clustering into
64 clusters using k-means. My tests showed that using only
the Gaussian filters from step one produced the best results.
The brightness map was the default gray scale values clustered
into 16 clusters and the colors was normalized RGB values
clustered into 16 values.

Before clustering, data manipulation was required reshape
the data from a 3D to 2D. The colors used in the texton
map were generated using a HSV color distribution which
was borrowed from stack overflow (link in comment)

E. Map Gradients

To get the gradients of the maps, I first needed to create
half-disks to get the difference changes in cluster ids.

1) Half-disk Filter Bank: The half-disk masks were imple-
mented by starting the loop on the right half of the filter with
all values set to 0. Looping over the right side, a check was
created to see if the euclidean distance of the coordinates were
within a certain radius. If it was within the radius, the cell got
the value 1. These filters were then flipped to create a matching
disk. These disks were rotated 8 times using OpenCV and each
time a matching disk was created. The filter had 3 sizes which
were {7, 17, 27} and are displayed in figure 6.

2) Chi-Distance: The Chi-Distance calculates the distance
between two histograms. the two histograms here are the
values for each pair of half disks for all the bins. Once all
the filters were applied, the Chi-Distance was calculated with
the following equation:

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)2

gi + hi

I selected, after few tests of mean, median and max that
the mean of all the Chi-Distances was the most optimal final
distance value for that pixel.

3) Gradients: The output of the Chi-Distance was the
gradient of change in texture, brightness and color. figures
7 8 9 display these gradients which are scaled to grayscale
values from 0 − 255

2

Fig. 5. Texton Map

Fig. 6. Half-disk Filter Bank

4) Final Pb-lite Output: The final output from the detector
was then not a edge by it self but rather a weight on the Canny
and Sobel edge detection algorithms. The weights were the
gradient values combined:

PbEdges =
(Tg + Bg + Cg)

3
�(w1∗cannyPb+w2∗sobelPb)

The weights that I selected for Canny and Sobel were 0.4
and 0.6 respectively. These weights were selected because with

Fig. 7. Brightness Gradient

Fig. 8. Color Gradient

3

Fig. 9. Texton Gradient

manual inspection, Sobel seemed to have better edge detection
on the main feature/item in the image while Canny found all
edges. The final output is then shown in figure [?]

F. Execution Notes

To execute the Wrapper.py, you need pass in a path to the
base folder which should have the SobelBaseline, CannyBase-
line and Images folder as the first argument and then the image
name as the second argument.

Because of issues with cv2.imshow where if multiple win-
dows were opened consecutively, the last two images would
be distorted or not displayed, the images are only saved to the
disk.

Example: ’python Wrapper.py ../BSDS500/ 1’
Fig. 10. Pb-lite Final Output

4

Fig. 11. My First Network

III. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this section I will describe the network I created, what
improvements I did to it which were inspired from and then on
compare it to ResNet, ResNeXt and DenseNet. I was limited
by the number of epochs I could do because of the slow
training of the network.

A. My First Neural Network

I used the Hvass Labs tutorial [2] on convolutional networks
to guide me through creating a convolutional network. This
came of great help because I had not implemented a neural
network in TensorFlow before. My network was structured as
had the following parameters.

• Number of parameters: 311,982
• Optimizer: AdamOptimizer
• Learning Rate: 0.001
• Batch Size: 16
• Epochs: 15
My network architecture is shown in figure 11
The model was best trained after 6 epochs with 58.19%

accuracy on the test data. figure 12 shows train accuracy, figure
13 shows training loss, figure 14 the confusion matrix on the
best trained model and figure 15 shows the test accuracy.

I ran my network with multiple different values for Epoch
and Mini Batch Size without any noticeable difference in test
accuracy.

Fig. 12. First Network: Train accuracy over epochs

Fig. 13. First Network: Train Loss over epochs

Fig. 14. First Network: Test and Train confusion matrix on best model

Fig. 15. First Network: Test accuracy over epochs

5

Fig. 16. Improved Network: Train accuracy over epochs

Fig. 17. Improved Network: Train Loss over epochs

B. Improving Accuracy

When trying to improve accuracy of my model, I attempted
to standardize the values on my images. For all images, I
divided all pixel values by 127.5 and subtracted 1 which
resulted in all values being in the range [-1,1]This increased
the accuracy of my model to 69.69% on test data. Because of
time restrictions I was unable to evaluate more improvements.

I attempted decaying the learning rate but that did not work
for me. I read online that the AdamOptimizer already has
decaying learning rate but was unable to verify that. It did
not increase my accuracy but rather lowered it. I did not
augmenting my data because of the time taken to train my
current data set.

The model was best trained after 3 epochs with 69.69%
accuracy on the test data. figure 16 shows train accuracy, figure
17 shows training loss, figure 18 the confusion matrix on the
best trained model and figure 19 shows the test accuracy.

Fig. 18. Improved Network: Test and Train confusion matrix on best model

Fig. 19. Improved Network: Test accuracy over epochs

6

Fig. 20. My ResNet Network

C. ResNet

I decided that I was going to introduce the architecture im-
provements that the networks included in their paper into my
first network instead of implementing their network. ResNet[3]
introduced shortcut paths over layers.
I added the shortcut from the raw input to the output of the
second convolution layer. The shortcut was first pooled with
a filter of size 4 with a stride 4 and the dimensions increased
from 3 to 36 by concatenating 8x8x33 zeroed matrices before
adding. This implementation performed best by all I tried
which I will talk about in the comparison section.

My ResNet shown in figure 20 had 336,558 parameters with
all the same configurations as above for comparison purposes.

The model was best trained after 4 epochs with 71%
accuracy on the test data. figure 21 shows train accuracy, figure
22 shows training loss, figure 23 the confusion matrix on the
best trained model and figure 24 shows the test accuracy.

After multiple attempts at implementing the batch normal-
ization defined in the network I ended up skipping that. It
either did nothing or degraded the performance of my network
greatly. After consulting with a peer, he set the training
argument as true for both training and testing. For me, it
worked best when i set it as false for both when training and
when testing but I know that was wrong to do so I decided to
not use batch normalization.

Fig. 21. ResNet: Train accuracy over epochs

Fig. 22. ResNet: Train Loss over epochs

Fig. 23. ResNet: Test and Train confusion matrix on best model

Fig. 24. ResNet: Test accuracy over epochs

7

Fig. 25. My ResNeXt Network

Fig. 26. ResNeXt: Train accuracy over epochs

D. ResNeXt

ResNeXt[4] proposed instead of making the network deeper,
to make the network wider. I implemented this idea into my
network by tripling the number of convolution layers. All of
the outputs of the convolution layers and from the shortcut
were added together (not concatenated) before ReLu and the
flattening layer.

My ResNeXt shown in figure 25 had 343,286 parameters
with all the same configurations as above for comparison
purposes.

The model was best trained after 3 epochs with 70.68%
accuracy on the test data. figure 26 shows train accuracy, figure
27 shows training loss, figure 28 the confusion matrix on the
best trained model and figure 29 shows the test accuracy.

Fig. 27. ResNeXt: Train Loss over epochs

Fig. 28. ResNeXt: Test and Train confusion matrix on best model

Fig. 29. ResNeXt: Test accuracy over epochs

8

Fig. 30. My DenseNet Network

Fig. 31. DenseNet: Train accuracy over epochs

E. DenseNet

DenseNet[5] introduced forward connections that between
layers where each output layer got a shortcut from all other
layers before it. To implement this I added a shortcut after
my convolution first layer (i.e. 1 dense block) to the flattening
layer along with the shortcut from the input layer.

My DenseNet shown in figure 30 had 311,982 parameters
with all the same configurations as above for comparison
purposes.

The model was best trained after 4 epochs with 70.68%
accuracy on the test data. figure 31 shows train accuracy, figure
32 shows training loss, figure 33 the confusion matrix on the
best trained model and figure 34 shows the test accuracy.

Fig. 32. DenseNet: Train Loss over epochs

Fig. 33. DenseNet: Test and Train confusion matrix on best model

Fig. 34. DenseNet: Test accuracy over epochs

9

F. Comparison

If we only look at the accuracy, ResNet had the best
accuracy with 71%. The ResNet was by far the easiest to
understand and to implement.

I tested many approaches to connect the shortcut paths to
the results from the layers. The most successful one was the
addition and not the concatenation which was recommended
from the paper. The concatenation required more parameters
to implement because of the added 1x1 convolution required
to decrease the dimensions.

To fully evaluate and compare these architecture, I believe
that a much larger network is required that just the two
convolution layers I had. These architectures provide a solution
for a deep network which I do not have. The problem with
deep networks is that the deeper it goes, the harder the training
becomes because of the diminished gradient. These shortcuts
are suppose to help with that problem.

G. Execution Notes

I created a new file called Coach.py. This program uses the
Train.py and Test.py functions directly. The Train and Test
files still work as expected.

Example:
python Coach.py –BasePath ../CIFAR10 –NumEpochs 15 –
MiniBatchSize 16 –OutFolder ./output –LearningRate 0.001
–CheckPointPath ../Checkpoints/ –Normalize True

IV. CONCLUSION

I learned a lot from being thrown into the deep end like this
homework did. I am looking forward to implement more vision
and deep learning algorithms in the coming projects. For next
projects I need to focus on understanding the problem and
solution before starting to implement. This project took too
much time with going back and forth with implementations
that I didn’t know if they would work or not. Never the less,
I’m ready to take on this semester.

REFERENCES

[1] P. Arbelaez and C. Fowlkes, Contour Detection and Hierarchical Image
Segmentation 2010.

[2] M. E. H. Pedersen, Tutorial #02 - Convolutional Neural Network GitHub,
2016. [Online]. Available: https://github.com/Hvass-Labs/TensorFlow-
Tutorials/commits/master/02 Convolutional Neural Network.ipynb. [Ac-
cessed: 20-Jan-2019].

[3] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[4] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, Aggregated Residual
Transformations for Deep Neural Networks, 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[5] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, Densely
Connected Convolutional Networks, 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

10

