Homework 0

- Alohomora!

Report

Sigurthor Bjorgvinsson
Department of Computer Science
University of Maryland
College Park, Maryland 20740

I. INTRODUCTION

In this project, we touched on boundary detection and deep
learning. In Section II I will describe the steps taken to
implement a simplified version of the Pb algorithm[1] and
in section III T will describe the first network I created, how
I improved it and how I introduced ideas from ResNet[3],
ResNeXt[4] and DenseNet[S] into my model. T will then
end with a comparison between the four different networks
implemented.

II. PHASE 1: SHAKE MY BOUNDARY

In this section I will describe my attempt at implementing
the Pb-Lite boundary detection algorithm along with few extra
filters. Finally I end this section with discussion about how to
execute my code.

A. Derivative of Gaussian (DoG) Filter Bank

To created the DoG Filter Bank, I needed to create a
gaussian matrix. In later filters, I needed to have seperate o,
and o, values so my gaussian function used the following
equation

A)
2mo L0y

To get the derivative of the gaussian matrix, I convolved
gradient matrices shown below with the 2d Gaussian Matrix
generated with equation 1 where o, and o, were the same.

-1 0 +1f|-1 -2 -1
-2 0 +2 0 0 0
-1 0 +1| [+1 +2 +1

When these matrices are convolved, with zero padding, with
the Gaussian matrix, the output are two matrices that are the
gradient G, and G, respectively. This gradient is a close
estimate of the derivative of the Gaussian function. I started
out with the derived function of the Gaussian equation but in
later filters I was having issues introducing the o, and oy so
this approach was selected.

The rotation of the filters is performed by using equation 2

F = cos(rad) * Gy, + sin(rad) * G, (2)

Fig. 1. DoG Filter Bank

The size (kSize x kSize) of the filters are selected by the
following equation to make sure that most of distribution is
included in the filter:

kSize = [0 x6] + 1
if kSize%2 == 0: 3)
kSize+ =1

Example filters are shown in figure 1. If the size of the filter
is smaller than other filters in the image, the smaller filters
are padded with white background. When the images were
resized or extended, the differences between the filters was
not apparent which lead to this decision.

B. Leung-Malik (LM) Filter Bank

The LM Filter Bank includes 4 sets of filters which I
will describe in this section. For the Gaussian derivatives, the
sigmas used in the LM smaller, figure 2 are o = {1,/2,2}
and in the LM Larger, figure 3 are 0 = {v/2,2,2v/2}.
Derivatives are rotate in 6 different orientations split over 180°.

A issue occured when I needed to rate these morphed
Gaussian distribution filters. Equation 2 did not work for
the derivatives in this bank so a function was implemented
using the openCV rotate functionality. This resulted in some
smudges but I was unable to find another way.

1) First Derivative Gaussian: The first set(first 3 rows
on the left) is the first derivative of a morphed Gaussian
distribution. These filters are similar to DoG filters, except
that they are stretched in one direction. Here the separate o
values in equation 1 comes in and the o, is set to 3 * 0.
Convolution to get the G, is applied once with zero padding
to preserve the filter size.

2) Second Derivative Gaussian: The second set (first 3
rows on the right) is the second derivative of the same
Gaussian distribution as above. Here, the matrix used to get
G, is convolved twice to get the second derivative.

3) Laplacian of Gaussian (LoG): The LoG filters are the
third set (left most 8 filters in the last row). These filters

Fig. 2. LM Filter Bank Small

ENNOAEESNSNDAZE
ESNDAEESNNMBE
E S B 0 A B E R NN mMm A E

Fig. 3. LM Filter Bank Large

are generated by convolving the following matrix, without
padding, to a Gaussian distribution matrix:

0 -1 0

The reason why the convolution was done without padding
was that the edges would of the output matrix would be wrong
because it detects an edge. This edge is only there because of
the zero padding which cuts the small numbers on the edges.

Another filter was tested with all -1 around a centered 8
but that filter provided filters further from the examples which
lead to the decision of using the 4 centered.

These filters were generated with these o = {1, V2,2, 2\@}
and 3¢ for LM small and o = {v/2,2,21/2,4} and 30 for LM
large

4) Gaussian: These filters are just simple Gaussian filters
generated with the same o using the gaussian equation 1.
These filters were generated with these o = {1,v/2,2,2v/2}
for LM small and o = {1/2,2,2v/2,4} for LM large.

C. Gabor Filter Bank

The Gabor filters are generated with a Gaussian distribution
with is modulated by a sinusoidal plane wave. The filter size
was preset so that the filters could occupy the entire filter size
so they do not use equation 3. To generate these filters, there
is an equation that takes 5 variables. These variables are o, 6,
A, psi and ~. The way that I understand these variables are
the following. o is the standard deviation, 6 is the rotation, A
is the wave length, psi is the offset and ~ is the offset of the
filter in terms of width. Figure 4 shows the generated filters
filter size of 13 and 6 orientations of 360°. Gamma was not
used but the o, 0, psi pairs used were

{(2.0,1.5,0.0), (3.0, 3.0,0.0), (4.0,4.5,0.0), (5.0, 7.0, 0.0),
(7.5,10.0,0.0), (7.5,10.0, 15.0)}

==flans
=L IAN

Fig. 4. Gabor Filter Bank

where the last change in psi was to invert the wave or shift it
so that it seems inverted.

D. Maps

In this subsection I will discuss how the Texton map,
Brightness map and Color map was generate and clustered.
The texton map is generated after convolving some of the
filters selected from the banks above and then clustering into
64 clusters using k-means. My tests showed that using only
the Gaussian filters from step one produced the best results.
The brightness map was the default gray scale values clustered
into 16 clusters and the colors was normalized RGB values
clustered into 16 values.

Before clustering, data manipulation was required reshape
the data from a 3D to 2D. The colors used in the texton
map were generated using a HSV color distribution which
was borrowed from stack overflow (link in comment)

E. Map Gradients

To get the gradients of the maps, I first needed to create
half-disks to get the difference changes in cluster ids.

1) Half-disk Filter Bank: The half-disk masks were imple-
mented by starting the loop on the right half of the filter with
all values set to 0. Looping over the right side, a check was
created to see if the euclidean distance of the coordinates were
within a certain radius. If it was within the radius, the cell got
the value 1. These filters were then flipped to create a matching
disk. These disks were rotated 8 times using OpenCV and each
time a matching disk was created. The filter had 3 sizes which
were {7,17,27} and are displayed in figure 6.

2) Chi-Distance: The Chi-Distance calculates the distance
between two histograms. the two histograms here are the
values for each pair of half disks for all the bins. Once all
the filters were applied, the Chi-Distance was calculated with
the following equation:

2 1o (g — hi)?
X (g,h) = 2; i h

I selected, after few tests of mean, median and max that
the mean of all the Chi-Distances was the most optimal final
distance value for that pixel.

3) Gradients: The output of the Chi-Distance was the
gradient of change in texture, brightness and color. figures
7 8 9 display these gradients which are scaled to grayscale
values from 0 — 255

Fig. 5. Texton Map

|
(x{z'x
NN N ..
FPAFALFA

PAPZAFA
ol Y VW

Fal nls
A NANAN

ol ot b

r
b

Fig. 6. Half-disk Filter Bank

4) Final Pb-lite Output: The final output from the detector
was then not a edge by it self but rather a weight on the Canny
and Sobel edge detection algorithms. The weights were the
gradient values combined:

PbEdges = W

The weights that I selected for Canny and Sobel were 0.4
and 0.6 respectively. These weights were selected because with

O (wy xcanny Pb+wyxsobel Pb) &

Fig. 8. Color Gradient

Fig. 9. Texton Gradient

manual inspection, Sobel seemed to have better edge detection
on the main feature/item in the image while Canny found all
edges. The final output is then shown in figure [?]

F. Execution Notes

To execute the Wrapper.py, you need pass in a path to the
base folder which should have the SobelBaseline, CannyBase-
line and Images folder as the first argument and then the image
name as the second argument.

Because of issues with cv2.imshow where if multiple win-
dows were opened consecutively, the last two images would
be distorted or not displayed, the images are only saved to the
disk.

Example: *python Wrapper.py ../BSDS500/ 1’

Fig. 10. Pb-lite Final Output

Input
32323

|

Convolution Layer
16@5%5

MaxPool
2x2 - 2 siride

Out: 16x16x16

iHeLu

Convolution Layer
B@5%5

MaxPool
2%2 - 2 stride

Out: 8x8x36

lReLu

Flattening Layer
8x8x36

Neurons: 2,304
Relu

Y

Fully Connected Layer

Neurons: 128

4
Output Layer

Neurons: 10

Fig. 11. My First Network

Train Accuracy Over Epocs

Accuracy (%)
g
2

/,J\/’“‘/—/

Fig.

12. First Network: Train accuracy over epochs

Train Loss over Epocs

5000

4000

3000

Loss

2000

1000

Fig. 13.

First Network: Train Loss over epochs

Best Confusion Test:

to guide me through creating a convolutional network. This
came of great help because I had not implemented a neural
network in TensorFlow before. My network was structured as
had the following parameters.

652 245 56 48 68 21 6
145 446 18 77 38 34 14
(@)

15 3715 174]
46 106 4084]
7)

(8)
(9)

[677 32 43 26 40 11 6 18 84 63] (8)
[24768 2 9 13 9 8 9 24142] (1)
III. PHASE 2: DEEP DIVE ON DEEP LEARNING [113 12 379 101 164 115 45 32 16 20] (2)
[48 26 57 354 105 271 35 36 28 48] (3)
In this section I will describe the network I created, what e Bl o s I e
. 16 24 42 113 144 71 541 14 14 21 6
improvements I did to it which were inspired from and then on { 23 10 34 39104 114 963 8 29} 573
compare it to ResNet, ResNeXt and DenseNet. I was limited e b a e
by the number of epochs I could do because of the slow @ W@ e @ & & @@ @
.. Best Confusion Train:
training of the network. [4103 67 186 63 122 44 12 47 223 213] (@)
[684323 5 27 52 19 20 7 74 485] (1)
. [429 70 2722 323 97 399 124 93 68 75] (2)
A. My First Neural Network [156 73 172 2392 475 1196 144 137 122 133] (3)
[281 29 246 217 3683 193 181 252 40 38] (4)
1 1 [52 39 161 586 347 3514 62 162 59 98] (5)
I used the Hvass Labs tutorial [2] on convolutional networks SR A S B
[85 31 78 158 422 390 14 3758 24 84] (7)
[
[

W @ @) @ 6 6 () (9

Fig. 14. First Network: Test and Train confusion matrix on best model
o Number of parameters: 311,982
o Optimizer: AdamOptimizer

o Learning Rate: 0.001

« Batch Size: 16

o Epochs: 15

My network architecture is shown in figure 11

The model was best trained after 6 epochs with 58.19%
accuracy on the test data. figure 12 shows train accuracy, figure
13 shows training loss, figure 14 the confusion matrix on the
best trained model and figure 15 shows the test accuracy.

I ran my network with multiple different values for Epoch L e e
and Mini Batch Size without any noticeable difference in test
accuracy.

100% Test Accuracy Over Epocs

Accuracy (%)
g
K

Fig. 15. First Network: Test accuracy over epochs

Train Accuracy Over Epocs

Accuracy (%)
g
=

Fig. 16. Improved Network: Train accuracy over epochs

500 Train Loss over Epocs

4000

3500

3000

2500

Loss

2000

1500

1000

500

Fig. 17. Improved Network: Train Loss over epochs

B. Improving Accuracy

When trying to improve accuracy of my model, I attempted
to standardize the values on my images. For all images, I
divided all pixel values by 127.5 and subtracted 1 which
resulted in all values being in the range [-1,1]This increased
the accuracy of my model to 69.69% on test data. Because of
time restrictions I was unable to evaluate more improvements.

I attempted decaying the learning rate but that did not work
for me. I read online that the AdamOptimizer already has
decaying learning rate but was unable to verify that. It did
not increase my accuracy but rather lowered it. I did not
augmenting my data because of the time taken to train my
current data set.

The model was best trained after 3 epochs with 69.69%
accuracy on the test data. figure 16 shows train accuracy, figure
17 shows training loss, figure 18 the confusion matrix on the
best trained model and figure 19 shows the test accuracy.

Best Confusion Test:

[756 14 44 11 9 8 7 6102 49] (@)
[198@ 8 9 2 3 3 3 38 95] (1)
[78 18 672 42 60 49 34 28 16 11] (2)
[41 16 129 453 40 169 53 32 29 38] (3)
[41 8126 65593 36 48 56 18 9] (4)
[24 & 86 162 34602 21 38 14 13] (5)
[9 11112 57 41 19 716 8 18 17] (6)
[25 9 51 34 79 58 & 704 12 38] (7)
[57 26 12 4 3 2 4 1862 29] (8)
[3 8 12 13 3 9 2 9 33 797] (9)
(8) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Best Confusion Train:
[4317 29 122 26 22 17 3 14 324 126] (@)
[404587 13 12 7 4 4 o 98 229] (1)
[236 18 4121 99 154 189 85 41 98 47] (2)
[117 32 414 3118 151 675 162 106 186 119] (3)
[129 18 467 192 3727 124 99 118 81 53] (4)
48 24 322 557 148 3616 79 111 49 54] (5)
25 3@ 429 224 98 984009 6 37 44] (6)
79 8 183 92 247 112 7 4168 35 69] (7)
82 47 28 13 3 3 6 24755 61] (8)
49 213 27 28 2 8 7 10 188 4564] (9)
(@ (1) (2) (3) (@) (5 (&) (7) (8) (9

Fig. 18. Improved Network: Test and Train confusion matrix on best model

100% Test Accuracy Over Epocs

90%

80%

70% I

60%

50%

Accuracy (%)

0%

30%

20%

10%

Fig. 19. Improved Network: Test accuracy over epochs

Input
32432x3

l (Shortcut),

Convolution Layer

16@5%5

MaxPool MaxPool
2x2 - 2 slride 4x4 - 4 stride
Out: 16x16x16 Out: 8x8x3

o

Increase dimension

lReLu

Convolution Layer
36@545
Qut: 8x8x36

MaxPool
2x2 - 2 stride

Qut: 8x8x36

Addition

Qut: 8x8x36

lReLu

Flattening Layer
8x8x36

Neurons: 2,304

lF‘.eLu

Fully Connected Layer

Neurons: 128

l

Output Layer

Neurons: 10

Fig. 20. My ResNet Network

100%

90%

Accuracy (%)
g
32

Train Accuracy Over Epocs

Fig. 21. ResNet: Train accuracy over epochs

4500

4000

3500

3000

2500

Loss

2000

1500

1000

500

Train Loss over Epocs

Fig. 22. ResNet: Train Loss over epochs

Best Confusion Test:

[7486 14 55 16 25 5 18 12 84 31] (8)
[198%W 6 8 2 2 7 4 37 85] (1)
61 3552 79 162 48 58 24 12 9] (2
C' ReSNet % 16 12 57 565 186 117 61 38 20 14% Eig
. [17 4 4@ 64731 31 41 62 9 1] (4)
I decided that I was going to introduce the architecture im- [11 2 6823 67527 28 68 9 5] (5)
. . . . [4 11 37 72 77 20759 & 1@ 4] (6)
provements that the networks included in their paper into my [1e s 2727040 571 6 81O
first network instead of implementing their network. ResNet[3] (2o 22 s o1 %m0
introduced shortcut paths over layers.
I added the shortcut from the raw input to the output of the Best Confuston Train:
R | [4381 3@ 121 42 99 13 15 27 287 65] (8)
second convolution layer. The shortcut was first pooled with [384633 12 16 13 5 18 8 112 139] (1)
. . . . A i [140 6 3616 220 581 108 154 181 58 16] (2)
a filter of size 4 with a stride 4 and the dimensions increased [76 12 1293763 275 373 166 129 54 23] (3)
. i [37 3 92 1304474 55 59 128 17 5] (4)
from 3 to 36 by concatenating 8x8x33 zeroed matrices before [22 11 135 781 263545 S8 182 7 13] (5)
. o . . [12 18 118 288 208 63 4341 19 17 4] (6)
adding. This implementation performed best by all I tried [26 3 56 123 185 o8 10w 12 15] ()
. [99 44 12 29 31 1 12 8 4721 43] (8)
which I will talk about in the comparison section. [62 20 22 40 19 5 1o 25 894s521] (9)
@ @ @ () @ G 6 D @ O

My ResNet shown in figure 20 had 336,558 parameters with
all the same configurations as above for comparison purposes.

The model was best trained after 4 epochs with 71%
accuracy on the test data. figure 21 shows train accuracy, figure
22 shows training loss, figure 23 the confusion matrix on the
best trained model and figure 24 shows the test accuracy.

After multiple attempts at implementing the batch normal-
ization defined in the network I ended up skipping that. It
either did nothing or degraded the performance of my network
greatly. After consulting with a peer, he set the training
argument as true for both training and testing. For me, it
worked best when i set it as false for both when training and
when testing but I know that was wrong to do so I decided to
not use batch normalization.

Fig. 23. ResNet: Test and Train confusion matrix on best model

Accuracy (%)
g
=

Test Accuracy Over Epocs

Fig. 24. ResNet: Test accuracy over epochs

Input
I3

(Shortcut),
Convolution Layer Convolution Layer Convolution Layer
18@5%5 16@5%5 16@5%5
MaxPool MaxPool MaxPool
2x2 - 2 stride 2x2 - 2 stride 2x2 - 2 stride MaxPool
4x4 - 4 stride
Out: 16x16x16 Qut: 16x16x16 Qut: 16x16x16
Qut: 8x8x3

iReLu

Convolution Layer
36@5X5

lReLu

Convolution Layer
@55

1R9Lu

Convolution Layer
/@55

Increase dimension

Out: 8x8x36
MaxPool MaxPool MaxPool
242 - 2 stride 22 - 2 stride 2x2 - 2 stride
Out: 8x8x36 Out: 8x8x36 Out: 8x8x36
| i
Addition
QOut: 8x8x36

Flattening Layer
Bx8x36

Neurons: 2,304

lReLu

Fully Connected Layer

Neurons: 128

l

Output Layer

Neurons: 10

Fig. 25. My ResNeXt Network

Train Accuracy Over Epocs

g 3 8
2 R =

Accuracy (%)
g
3

s
S g
=

2 4 6 8 0 12 14 16 18
Epoc

Fig. 26. ResNeXt: Train accuracy over epochs

D. ResNeXt

ResNeXt[4] proposed instead of making the network deeper,
to make the network wider. I implemented this idea into my
network by tripling the number of convolution layers. All of
the outputs of the convolution layers and from the shortcut
were added together (not concatenated) before ReLu and the
flattening layer.

My ResNeXt shown in figure 25 had 343,286 parameters
with all the same configurations as above for comparison
purposes.

The model was best trained after 3 epochs with 70.68%
accuracy on the test data. figure 26 shows train accuracy, figure
27 shows training loss, figure 28 the confusion matrix on the
best trained model and figure 29 shows the test accuracy.

4500

Train Loss over Epocs

4000

3500

3000

2500

Loss

2000

1500

1000

500

Fig. 27. ResNeXt: Train Loss over epochs

Best Confusion Test:

[733 1
14 83

16 1

57 3
28 11
@) (1

[
w

5 49
1 10
8 584
o 67
7 78
4 53
9 41
5 39
3 13
9 6
)@

37 14 7 5 12 75 53]
14 3 5 18 2 43 68]
72 78 56 60 44 17 19]
687 53 107 66 36 20 18]
71635 21 59 85 17 4]
241 48 521 35 54 17 14]
75 34 13883 13 7 2]
57 49 44 5767 4 17]
16 1@ 3 5 5832 26]
31 1 7 11 15 27 755]

3) 4

(5) (8) (7) (8) (9)

Best Confusion Train:

[4205 59
[49 4540
[199 16 3
[54 22
[88 7
[24 15
[12 21
24 4
[156 68
[45 418
(8) (1)

Fig. 28. ResNeXt: Test and Train confusion matrix on best model

100%

90%

80%

Accuracy (%)
8§ & 8 3
ENE

4

20%

10%

157 82 37 14 29 39 220 167]
13 29 4 4 26 12 148 175]
658 291 277 132 238 111 48 38]
19@ 373@ 186 389 226 100 62 41]
236 215 389 78 198 249 29 28]
179 1188 166 3082 188 198 18 22]
173 28e 80 45 4338 17 22 12]
82 189 137 126 22 4363 12 41]
25 42 17 8 14 8 4581 81]
13 79 18 12 16 26 83 4306]
@ 3) @ () 6B () (3 (9)

Test Accuracy Over Epocs

Fig. 29. ResNeXt: Test accuracy over epochs

Input

32x32x3
(Shortcut), (Shortcut),
LayirSCéngggulmn MaxPool
2x2 - 2 stride 4500 Train Loss over Epocs
MaxPool 5
2x2-2 Out: 16x16x3 4000
HiaPosl 51‘3::&21“: Increase dimension 3500
Rt SIS Out: 16x16x16 3000
Out: 8x8x3

Loss

2500
Addition
2000
Out: 16x16x16
I di
ncrease dimension — 1500
Out: 3x8x36 {Shurlcul]j o0

Convolution Layer MaxPool o
36@545 2x2 - 2 stride
MaxPool Out: 8x8x3 " 4 6 8 10 12 14 16
22-2s0e | ¥ Epoc
Out: 8xBx36 Increase dimension
l Out B Fig. 32. DenseNet: Train Loss over epochs
Addition
Qut: 8x8x36

Flattening Layer
8x8x36

Neurons: 2,304

lReLu

Fully Connected Layer

Best Confusion Test:

[761 1@ 48 25 20 4 14 12 85 21] (@)

Neurons: 128 [15762 13 15 2 1 15 1@ 68 99] (1)
l 63 4641 49 81 35 82 21 16 8] (2)

[
[25 11 97 492 82 112 126 35 13 7] (3)
[

Output Layer [17 2 86179 53530 53 64 11 5] (5)
[
[
[

3@ 4 96 38675 21 72 55 7 2] (4)
6 1 46 42 41 14829 7 10 4] (6)
16 0 42 46 72 49 21738 7 9] (7)

48 16 19 8 11 6 5 1874 12] (8)
[42 66 19 13 4 7 18 25 48 766] (9)

Fig. 30. My DenseNet Network @ @ @@ @6 e EE

Neurons: 10

Best Confusion Train:
[4467 9 130 5@ 45 11 21 29 205 33] (@)

100% Train Accuracy Over Epocs [464497 16 28 4 1@ 29 12 136 238] (1)
— [198 54885 106 204 79 223 45 41 14] (2)
90% [65 8 244 3451 258 360 448 182 45 19] (3)

s0% [75 4 320 106 4141 37 155 138 23 1] (4)
[29 5 253 703 2443372 209 166 13 6] (5)
0% [28 18 115 83 89 19 4626 9 15 6] (6)
[40 3 138 112 200 84 284384 7 4] (7)
[99 24 33 26 15 11 14 547435 24] (8)

60%

Accuracy (%)

0% [184 118 31 47 21 9 19 29 117 4513] (9)
0% @) (1) (2) (3) @ (5 (&) (M) (&) (9)
30%
0% Fig. 33. DenseNet: Test and Train confusion matrix on best model
10%
0%
2 a4 6 8 10 12 14 16

Fig. 31. DenseNet: Train accuracy over epochs

E. DenseNet

DenseNet[5] introduced forward connections that between
layers where each output layer got a shortcut from all other so%
layers before it. To implement this I added a shortcut after
my convolution first layer (i.e. 1 dense block) to the flattening
layer along with the shortcut from the input layer.

My DenseNet shown in figure 30 had 311,982 parameters
with all the same configurations as above for comparison

Test Accuracy Over Epocs

Accuracy (%)
g
&

purposes. w0
The model was best trained after 4 epochs with 70.68% Y e s w w o u

accuracy on the test data. figure 31 shows train accuracy, figure ’

32 shows training loss, figure 33 the confusion matrix on the Fig. 34. DenseNet: Test accuracy over epochs

best trained model and figure 34 shows the test accuracy.

FE. Comparison

If we only look at the accuracy, ResNet had the best
accuracy with 71%. The ResNet was by far the easiest to
understand and to implement.

I tested many approaches to connect the shortcut paths to
the results from the layers. The most successful one was the
addition and not the concatenation which was recommended
from the paper. The concatenation required more parameters
to implement because of the added 1x1 convolution required
to decrease the dimensions.

To fully evaluate and compare these architecture, I believe
that a much larger network is required that just the two
convolution layers I had. These architectures provide a solution
for a deep network which I do not have. The problem with
deep networks is that the deeper it goes, the harder the training
becomes because of the diminished gradient. These shortcuts
are suppose to help with that problem.

G. Execution Notes

I created a new file called Coach.py. This program uses the
Train.py and Test.py functions directly. The Train and Test
files still work as expected.

Example:
python Coach.py —BasePath ../CIFAR10 —NumEpochs 15 —
MiniBatchSize 16 —OutFolder ./output —LearningRate 0.001
—CheckPointPath ../Checkpoints/ -Normalize True

IV. CONCLUSION

I learned a lot from being thrown into the deep end like this
homework did. I am looking forward to implement more vision
and deep learning algorithms in the coming projects. For next
projects I need to focus on understanding the problem and
solution before starting to implement. This project took too
much time with going back and forth with implementations
that I didn’t know if they would work or not. Never the less,
I’'m ready to take on this semester.

REFERENCES

[1] P. Arbelaez and C. Fowlkes, Contour Detection and Hierarchical Image
Segmentation 2010.

[2] M. E. H. Pedersen, Tutorial #02 - Convolutional Neural Network GitHub,
2016. [Online]. Available: https://github.com/Hvass-Labs/TensorFlow-
Tutorials/commits/master/02_Convolutional_Neural_Network.ipynb. [Ac-
cessed: 20-Jan-2019].

[3] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[4] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, Aggregated Residual
Transformations for Deep Neural Networks, 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[5S] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, Densely
Connected Convolutional Networks, 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

10

