
Homework 0 - Alohomora!
USING 5 LATE DAYS

John Kanu
Email: john.d.kanu@gmail.com

Abstract—In this paper I describe my implementation of
PbLite and neural networks for computer vision.

I. PHASE 1: SHAKE MY BOUNDARY

In this phase, we implemented a range of features that
are correlated with boundaries in an image. More precisely,
we implemented operations which map an image I to a 2-
dimensional image J where the magnitude of Jxy is propor-
tional to the strength of the gradient in the original image I
at pixel (x, y), i.e. the probability of boundary in I .

Combining the features together, we were able to implement
a fairly well-performing algorithm for edge detection, which
outperforms the classic Sobel and Canny baseline. By incorpo-
rating brightness, color, and texture gradient information with
hundreds of filters at varying scale and orientation, the Pb-lite
is able to capture a wide range of information that is left out
by any single component, as evident in the Sobel and Canny
baseline. By expressing the probability of boundary as a linear
combination with weights summing to 1, the computation
of the probability by Pb-lite effectively considers weighted
votes by each of the texton gradient, brightness gradient, color
gradient, CannyPb, and SobelPb (the latter two with variable
weights), each of which is able to detect boundaries of a
particular type, but none of which is able to detect boundaries
of all types.

A. Oriented DoG filters

The first generated filter was the oriented derivative of
gradient (DoG) filter. This task involved generating a filter
bank of oriented Derivative of Gaussian (DoG) filters.

1) Implementation: The filter bank consists a set of filters
over the two dimensions of size and orientation. Orientations
are defined in the range [0, 2π), containing no duplicates, and
size is given as some arbitrary odd number, defining a valid
kernel for convolution. See Fig 1. for a sample filter bank.

Fig. 1. Sample oriented DoG filter bank

There are several methods for generating the filters, includ-
ing the direct computation of the derivative of the Gaussian,
or convolving a simple Sobel filter and a Gaussian kernel,
which is an approximation of the actual value. For simplicity,
I employed the latter.

Fig. 2. Derivative of the Gaussian function

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

The Gaussian function is defined in equation (1). The
derivative of the Gaussian is visualized in Fig 2, which
illustrates the similarity between DoG kernel intensity and the
actual value of the derivative of the Gaussian.

Fig. 3. Gaussian filter

The Sobel operator is defined by two filters, one for the x
component and one for the y component, given as Gx and
Gy , respectively. Each of these filters is designed for edge
detection, and is maximized by a gradient along the axis
perpendicular to the row or column of zeros.

Given these definitions, the similarity between the true
derivative of Gaussian and the convolution of Sobel and Gaus-
sian filters becomes apparent. Given the positive, zero, and
negative entries whose magnitudes are inversely proportional
to the distance from center, the convolution of the Sobel
operator allows us to approximate the true value. Procedurally,
in order to generate the DoG filter for any given orientation,
we simply take Gx and convolve it with the Gaussian kernel.
Below is the output of this process.



Fig. 4. Sobel filters for each component

Fig. 5. DoG filters generated for 2 scales and 4 orientations

2) Interpretation and Analysis: Below is an example image
from BSDS500. We can clearly see edges between the penguin
and the background, between rocks and neighboring rocks,
between the penguin’s eyes and its face, and between the wide,
curved ground in the background and the lighter sky.

Fig. 6. Image 7.png in BSDS500

Below is the image convolved with one of the DoG filters.
We can see high intensity around the penguin’s edges, and
between rocks. However, we do not observe high intensity in
the background curve, where there should be an edge. This
is due to the orientation of the filter, which picks up vertical
edges more than horizontal edges.

B. Leung-Malik Filters

In this section we implemented two filter banks consisting
of Leung-Malik filters at two different scales. The filters are
designed to detect edges, bars, and spots at multiple scales
and orientations, allowing us to detect boundaries, which are

Fig. 7. Sample DoG convolution

often characterized by one or more of these phenomena in the
image.

1) Implementation: Each filter bank is a set of multi scale,
multi orientation filter bank with 48 filters, including first
and second order derivatives of Gaussians at 6 orientations
and 3 scales; 8 Laplacian of Gaussian (LOG) filters; and 4
Gaussians.

In LM Small (LMS), the filters occur at basic scales σ =
{1,

√
2, 2, 2

√
2}. The first and second derivative filters occur

at the first three scales with an elongation factor of 3, i.e.,
(σy = σ and σy = 3σx). The Gaussians occur at the four
basic scales while the 8 LOG filters occur at σ and 3σ. Below
is a sample output of this process.

Fig. 8. Leung-Malik Small Filter Bank

For LM Large (LML), the filters occur at the basic scales
σ = {

√
2, 2, 2

√
2, 4}.

2) Interpretation and Analysis: Figure 10 contains the
output of convolution of one of the small (LMS) filters with



Fig. 9. Leung-Malik Large Filter Bank

the same image from BSDS500. Unlike the previous DoG
kernel which did not pick up the edge in the background, this
particular LMS kernel is oriented so as to detect the edge.
Figure 11 demonstrates the convolution operation using large
(LML) filters. The output is more blurred than LMS for some
of the edges, and more prominent for others, as each kernel
operation has a wider receptive field, due to a larger scale.
As a result, the filters of different sizes pick up on edges of
varying width, allowing the full filter bank to detect a wide
range of edges in the image.

Fig. 10. Sample LMS convolution

C. Gabor Filters

The Gabor Filter is a linear filter used for texture analysis.
Unlike the previous two filters, which have a maximum of 2
peaks, the Gabor filter contains many peaks, which allows a
convolution of the Gabor filter to pick up higher frequency
changes in the surface of the image. Similar to the previous

Fig. 11. Sample LML convolution

filter banks, I generated multi-orientation and multi-scale
Gabor filters.

1) Implementation: The Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave, given by
the equation below, which defines the value of the filter at
given index, orientation, and scale. After implementing this
procedure, a filter bank can be generated as in Fig 11.

Fig. 12. Gabor filters generated at 3 different scales and 8 orientations

2) Interpretation and Analysis: Figure 13 illustrates a sam-
ple output of a Gabor convolution of 7.png in BSDS500.



Similar to the other filters we’ve seen so far, this output
contains high magnitude around the boundaries. However, the
image convolved with the high frequency filter demonstrates
a different activation pattern. Qualitatively, there are waves
present in the output, which are maximized at regions of
the image closely matching the waves in the filter. As we
begin to see higher activation slightly within the boundaries
of objects in the image, it appears that this filter incorporates
texture information into the computation of its output, such
that boundaries with higher texture variation yield higher
activation.

Fig. 13. Sample Gabor convolution

D. Texton Map

Using all of the previously defined filters, we can assign
many different attributes to any point in the image. Moreover,
these attributes are often not equal, though each one of them
represents a valuable piece of information that can be used to
predict the probability of boundary. Each feature is limited to
a size of 1-dimension (only 1 real number output per pixel),
but the features can be combined together to produce a high-
dimensional feature vector representing activations of filters
of different type, scale, and orientation. This gives a more
complete representation of the pixel with respect to boundary
information. To produce the map of an image, we cluster the
feature vectors and assign each point to a cluster based on the
cluster centroids.

1) Implementation: We use the K-means clustering algo-
rithm to cluster the datapoints to produce textons. This is
a fairly straightforward operation. There are several hyper-
parameters in the K-means algorithm, including the number
of clusters k and the initialization of cluster centroids. For
simplicity, I run K-means once with k = 8.

2) Interpretation and Analysis: As we can see in Figure 14,
each pixel is assigned a single texton, illustrated using a unique
color. regions of the image that have similar edge and texture
patterns are assigned to the same cluster. This allows us to
have a much lower dimensional representation of each pixel,

which translates into a lower dimensional representation of the
entire image, as the image appears to be subdivided into closed
regions of uniform texton identification. Boundaries between
these regions are evident in the sharp change between one
uniform region on one side of the boundary and a different
uniform region on the other side of the boundary, with different
texton IDs.

Fig. 14. Texton map

E. Brightness Map

This map operates on the brightness of the pixel, as opposed
to the texton. Clustering is performed on the brightness as
measured by the intensity of the grayscale image.

1) Implementation: I employ K-means clustering with k =
8.

2) Interpretation and Analysis: Figure 15 contains the
brightness map of the image. It is apparent that neighbor-
ing pixels belonging to the same region are not as cleanly
separated as in the texton map. The resulting brightness map
contains more noise than the texton map. However, the clusters
still have utilitary value in detecting boundaries.

F. Color Map

This map operates on the color of the pixel. Clustering
is performed on the RGB color space, as measured by the
intensities of the 3 RGB channels of the image.

1) Implementation: I employ K-means clustering with k =
8.

2) Interpretation and Analysis: Figure 16 contains the color
map of the image. It is apparent that neighboring pixels
belonging to the same region are not as cleanly separated as in
the texton map. However, the color map is very similar to the
brightness map. The resulting color map contains more noise
than the texton map. However, the clusters still have utilitary
value in detecting boundaries.



Fig. 15. Brightness map

Fig. 16. Brightness map

G. Half-disk masks

Half-disk masks are used to extract image in one direction
with respect to a single pixel. Pairs of half-disk masks at
opposing directions are combined to compare the information
in both opposing directions, to compute a gradient.

1) Implementation: Half-disk masks are generated by se-
lecting the pixels that lie within a circle and inside a half
of the circle given by the orientation. Below is the result
for varying scales and orientations. The code supports the
generation of a pair of masks facing in opposite directions,
i.e. with orientations θ and θ + π.

H. Texture Gradient

Here we used the computed the gradient in the texton map,
which is correlated with probability of boundary.

1) Implementation: The code for computing χ2 follows the
same structure as defined in the specifications on the course

Fig. 17. Half-disk masks

website. Division by 0 is avoided by adding a small epsilon
value to the denominator in the summation.

2) Interpretation and Analysis: The figures below illustrate
Texton gradient for Image 7. The quality of the edges is
dependent on the choice of k in the clustering procedure, as
well as the choice of scale and orientation of each of the filters
described above. The areas of high gradient correspond to the
changes in the intensity of the color map.

By visual inspection one can observe that there are many
continuous lines of high magnitude. Some boundaries appear
in places which a human would not consider a boundary to
exist, such as on both sides of the boundary in the background.
This is most likely due to the incorporations of large-scale
patterns in the high-dimensional feature vector, leading to
different textons around the edges. Nonetheless, one can
inspect the original image and observe that there slight changes
in the image around the boundary, which may be reflected
in the gradient. In other contexts, gradients of this kind may
actually correspond to boundaries, such as around clouds in
the sky. However, more information is needed to rule out the
boundary here, which is provided by the brightness gradient
and color gradient.

I. Brightness Gradient

Here we used the computed the gradient in the brightness
map, which is correlated with probability of boundary.

1) Implementation: The code for computing χ2 follows the
same structure as defined in the specifications on the course
website. Division by 0 is avoided by adding a small epsilon
value to the denominator in the summation.

2) Interpretation and Analysis: These boundaries are much
cleaner than for the texton gradient. However there are regions
of gradually changing magnitude within the penguin, which
should not be identified as boundaries.



Fig. 18. Texton gradient

Fig. 19. Brightness gradient

J. Color Gradient

Here we used the computed the gradient in the color map,
which is correlated with probability of boundary.

1) Implementation: The code for computing χ2 follows the
same structure as defined in the specifications on the course
website. Division by 0 is avoided by adding a small epsilon
value to the denominator in the summation.

2) Interpretation and Analysis: The color gradient looks
very similar to the brightness gradient. This is likely due to the
fact that gradients in color space are not reflected in grayscale
if brightness is approximately constant along the gradient. One
can observe a different pattern in the sky resulting from the
difference in information.

K. Sobel baseline

Figure 21 shows convolution of Image 7 with the Sobel
filter

Fig. 20. Color gradient

1) Interpretation and Analysis: Notice that the Sobel con-
volution fails to detect the boundaries in the background of the
image. The distribution of probabilities lies in high density
around the penguin and the middle ground in front of and
behind the penguin. The Sobel operator has ill-suited to detect
the softer boundary in the background, due to the simple
definition, which is sensitive only to a subset of all edges
that can appear in photos, namely those that are clearly and
sharply defined.

Fig. 21. Sobel edges of Image 7

L. Canny baseline

Figure 22 shows convolution of Image 7 with the Canny
filter

1) Interpretation and Analysis: In this image, we are able
to detect the boundary in the background. However, the areas
of high intensity in the rocks are not considered boundaries in
the ground truth. Moreover, the edges are as strong around the
penguin as they are around the rocks, which are less prominent
in human vision.



Fig. 22. Canny edges of Image 7

M. Pb-lite Output
We combine all the signals described earlier to create a

holistic prediction of probability of boundary.
1) Interpretation and Analysis: Notice that now we have

solved several of these problems. The Pb-lite output now is
very high around the edges of the penguin, and attains the
highest value in the image around the penguin. Pb-lite is also
able to detect the boundary in the background, unlike the Sobel
baseline. Boundaries around rocks are also less prominent, as
one would naturally expect. An additional positive sign is the
continuity of the edges around the penguin, which capture the
closed physical body of the penguin better than the Canny
baseline.

By incorporating brightness, color, and texture gradient
information with hundreds of filters at varying scale and
orientation, the Pb-lite is able to capture a wide range of
information that is left out by any single component, as evident
in the Sobel and Canny baseline. By expressing the probability
of boundary as a linear combination with weights summing to
1, the computation of the probability by Pb-lite effectively
considers weighted votes by each of the texton gradient,
brightness gradient, color gradient, CannyPb, and SobelPb (the
latter two with variable weights), each of which is able to
detect boundaries of a particular type, but none of which is
able to detect boundaries of all types.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

A. Section 3.3
Number of parameters = 3247422
Optimizer = Adam Optimizer Learning rate = 1e-3 Batch

size = 16

B. Section 3.4
Number of parameters = 3250806
Optimizer = Adam Optimizer Decaying learning rate Ini-

tially 1e-3 Drops by factor or 1e-1 after 20 epochs Drops by
factor of 1e-2 after 40 epochs Drops by factor of 1e-3 after 60
epochs Drops by factor of 0.5e-3 after 80 epochs Batch size
= 32

Fig. 23. Pb-lite output

Fig. 24. CNN Architecture

C. Experiments

In this section I experimented with different learning rates.
The learning rate is variable. I also used batch normalization
between layers. This led to an increase in accuracy.



Fig. 25. CNN Train accuracy over epochs

Fig. 26. CNN Train loss over epochs

Fig. 27. CNN Test accuracy over epochs

Fig. 28. CNN Architecture

Fig. 29. CNN Confusion matrix


