
Homework 0: Alohamora!
Kartik Madhira

Masters of Engineering in Robotics
University of Maryland, College Park
Email: kmadhira@terpmail.umd.edu

USING 3 LATE DAYS

Abstract—Boundary detection, Image segmentation and object
classification in an image are fundamental problems in computer
vision. In this paper we present two separate novel techniques
that try to answer the boundary detection and object classification
problem and discuss the importance of having these novel
techniques.

I. PHASE 1: SHAKE MY BOUNDARY

We perform boundary detection using a novel method
called the ’Pb-Lite’ boundary detection. This algorithm
takes in an input image and using banks of filter creates
a boundaries visually better than traditional approaches of
Canny and Sobel boundary detection algorithms.

Filtering is essentially response to convolutions on each
pixel with a variety of filters and is used to access the low level
features in the image. This helps us to measure and aggregate
the regional texture, brightness and color properties. Different
scales and orientations of a particular filter are used so that
various types of textures can be addressed. Here, we have used
three filter banks namely: Oriented DoG filters, Leung-Malik
Filters and Gabor Filters.

A. Oriented DoG Filters

This filter is created by convolving a simple Sobel Filter
and a Gaussian kernel. The figure below shows the gaussian
filter bank used for generating the results shown in the future
sections. The filter bank is generated by using a single scale
value and 15 orientations. The total number of filters is 15.

B. Leung-Malik Filters

The Leung-Malik filter bank is a collection 48 filters with
multiple scales and orientations. It consists of first and second
order derivatives of Gaussians, Laplacian of Gaussian(LOG)
filters and 4 Gaussian filters. All these filters account for
different types of features in the image. The filter bank is
shown in the figure below:

C. Gabor Filters

A Gabor filter is generated by modulating a gaussian kernel
with a sinusoidal plane wave. This is a linear filter that
basically analyses if there is any specific frequency (governed
by λ) content in the image in specific directions around the

Figure 1: Oriented DoG filter bank for scale=2

Figure 2: Leung Malik filter bank



Figure 3: Gabor filter bank

point of interest. The Gabor filter bank used in this project is
shown in the figure below: The filter bank with is generated
for λ=1 with three scales: (9,16,25). Also, for each scale value,
12 filters with different orientations, uniformly spaced from 0
to 360 degrees are generated.

D. Texton Map T
The first step in this process is to filter the image and

find a Texton map which is essentially the texture map of
the image. We stack the filter responses depth wise and then
compute a K-means clustering into K number Texton ID
clusters of the filter responses. We use K=64 as the number
of clusters.

E. Brightness Map B
The Brightness map captures the changes in intensity of

light in the image. Similar to Texton map generation the
K-Means clustering of the grayscale image is performed for
K=16.

F. Color Map C
The Color map captures the changes in color in the image.

The color values were clustered using K-Means clustering into
16 clusters.

G. Gradient Maps

The Maps are used to again generate gradient maps Tg ,Bg

and Cg . These maps encode the texture, brightness and color
distributions changing at each pixel. These are generated by
comparing the values at each pixel by convolving the image
with a left/right half-disc pair centered at the pixel.

Figure 4: Texton map for image 2

Figure 5: Brightness map for image 3

We generate half disks by first generating a full disk kernels
and then applying a mask on top of the kernel generated.
Next we rotate the mask for the different orientations we
need for a particular scale. We masked this with the kernel
using a logical OR.

Using the above generated Half-Disk masks we compute
the Tg ,Bg and Cg maps by comparing the distributions
generated using each half-disk pair with a χ2 measure. The



Figure 6: Color map for image 5

Figure 7: Half-Disk filters

binning scheme is defined for K indexes which is equal
to the number of K-Means clusters for each Tg ,Bg and
Cg . This procedure is repeated for all the half-disk pairs
to generate a 3D matrix of size m × n × N where m,n
are the dimensions of the image and N is the number of filters.

H. PB-Lite Output

Finally, the gradient maps generated are combined with
Canny and Sobel baselines using the equation:

PbEdges =
(Tg +Bg + Cg)

3
�(w1∗cannyPb+w2∗sobelPb)

(1)
The � is the Hadamard operator which is the element-wise
multiplicatin of the arrays in the equation. The choice of
the weights w1 and w2 is based on the canny and sobel
baselines and the features we want from each baseline. The
only constraint is that w1 + w2 = 1.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

1) Initial neural network: The initial deep learning model
used here is a simple neural net with 2 convolution layers
followed by a fully connected network, followed by a softmax
output. This architecture did not use any data augmentation
while training and also no standardization technique was
used. The network reached above 90% training accuracy
pretty fast(less than 27 epochs as can be seen in the graphs).
The important thing to note here is that even though the
training accuracy is pretty high, the test accuracy reaches a
maximum of 52.7% for the same number of epochs as the
train set.

2) Improving accuracy: : In this network we try to improve
the accuracy of the previous network by first standardizing
the dataset within values [-1,1]. Next we also try to apply
data augmentation techniques wherein we do random noise
addition as well random left and right image rotation.
To increase the complexity of the network we add more
convolution layers followed by batch normalization. This is
shown in Fig.8. We get considerable improvement in the test
accuracy as the accuracy improves over the previous model
with a maximum of 72.03%

3) ResNet: : We keep the standardization and data
augmentation as it is and implement the ResNet architecture.
A Residual Network, or ResNet is a neural network
architecture which solves the problem of vanishing gradients
in the simplest way possible that is by applying skip
connections in a general residual block as shown in fig 11.
This allows the network to accommodate deep layers without
having the vanishing gradient problem. This network has
a slight improvement from the previous network with an
accuracy of 73.98% in the test set. We use 25 deep layers
in the ResNet architecture. Without the skip connections, a
’plain’ architecture with 25 deep layers would not allow us
to have lower losses as epochs increase.

4) ResNeXt: :
ResNext architecture is an improvement over the ResNet

architecture. This network utilizes the concept of parallelising
layers and concatenating them from Google’s Inception
model as well as the skip connection used in the ResNet.
This network utilizes the use of cardinality which is the size



Figure 8: Training and Loss vs Epochs without for network in
section I

of the set of transformations . In ResNext architecture, the
output, a[l], of layer, ’l’ much deeper into the network before
applying the non-linearity (Relu). Such multiple blocks are
added in parallel and the number of parallel units is equal
to cardinality. ResNeXt implemented in this homework has
two different parallely connected blocks with cardinality 8
. Both the blocks have three filters and have a convolution
layer with 128 filters in between to connect them. We get a
maximum accuracy of 68.7% by training it till 60 epochs.

5) DenseNet: Previous networks have shown that that
convolutional networks can be substantially deeper, more
accurate, and efficient to train if they contain shorter
connections between layers close to the input and those close
to the output. In DenseNet each layer connects to every other
layer in a feed-forward fashion. The idea here is that if
connecting a skip connection from the previous layer improves
performance, we just keep skip connections between all layers.
That way there is always a direct route for the information
backwards through the network.

Parameter Value
Batch Size 512
Learning Rate 0.001
Optimizer Adam
Number of Epochs 27
Max test Accuracy(last epoch) 52.7%
No. of Parameters 410090
Inference time(s) 0.0013

Table I: Parameters for the deep network used in section I

Figure 9: Test accuracy vs Epochs for network in section I

Figure 10: Model of the network in section 2

Figure 11: Confusion Matrix for network in I



Figure 12: Training and Loss vs Epochs without for improved
network

Figure 13: Test accuracy vs Epochs for improved network in
section 2

Parameter Value

Batch Size 512
Learning Rate 0.001
Optimizer Adam
Number of Epochs 45
Max test Accuracy(last epoch) 72.03%
No. of Parameters 473386
Inference time(s) 0.0023

Table II: Parameters for the deep network used in section II

Figure 14: Model of the improved network

Figure 15: Confusion Matrix for network in II

Figure 16: Training and Loss vs Epochs for ResNet



Figure 17: Test accuracy vs Epochs for ResNet

Figure 18: Skip connection in ResNet

Parameter Value
Batch Size 512
Learning Rate 0.001
Optimizer Adam
Number of Epochs 38
Max test Accuracy(last epoch) 73.98%
No. of Parameters 1134670
Inference time(s) 0.0025

Table III: Parameters for ResNet

Figure 19: First 7 of the 25 layers deep residual network

Figure 20: Confusion Matrix for ResNet

Figure 21: Training and Loss vs Epochs for ResNeXt



Figure 22: Test accuracy vs Epochs for ResNeXt

Figure 23: A ResNeXt block with cardinality=8

Parameter Value
Batch Size 512
Learning Rate 0.001
Optimizer Adam
Number of Epochs 64
Max test Accuracy(last epoch) 68.7%
No. of Parameters 1304670
Inference time(s) 0.0033

Table IV: Parameters for the ResNeXt

Figure 24: Confusion Matrix for ResNeXt

Figure 25: Training and Loss vs Epochs for Densenet

Figure 26: Test accuracy vs Epochs for Densenet

III. CONCLUSION

The conclusion goes here.

Figure 27: Densenet architecture



Figure 28: Confusion Matrix for Densenet

Figure 29: Clockwise (a)Texton Map, (b)Brightness Map,
(c)Color Map, (d)Texton gradient, (e)Brightness gradient and
(e) Color gradient for image 1

Figure 30: (f) Canny baseline and Sobel baseline for image 1

Figure 31: Pb-Lite output for image 1

(a)Texton Map, (b)Brightness Map, (c)Color Map, (d)Texton
gradient, (e)Brightness gradient and (e) Color gradient for
image 2

Figure 32: (f) Canny baseline and Sobel baseline for image 2



Figure 33: Pb-Lite output for image 2

Figure 34: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 3

Figure 35: (f) Canny baseline and Sobel baseline for image 3

Figure 36: Pb-Lite output for image 3

Figure 37: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 4

Figure 38: (f) Canny baseline and Sobel baseline for image 4



Figure 39: Pb-Lite output for image 4

Figure 40: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 5

Figure 41: (f) Canny baseline and Sobel baseline for image 5

Figure 42: Pb-Lite output for image 5

Figure 43: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 6

Figure 44: (f) Canny baseline and Sobel baseline for image 6



Figure 45: Pb-Lite output for image 6

Figure 46: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 7

Figure 47: (f) Canny baseline and Sobel baseline for image 7

Figure 48: Pb-Lite output for image 7

Figure 49: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 8

Figure 50: (f) Canny baseline and Sobel baseline for image 8



Figure 51: Pb-Lite output for image 8

Figure 52: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 9

Figure 53: (f) Canny baseline and Sobel baseline for image 9

Parameter Value
Batch Size 512
Learning Rate 0.001
Optimizer Adam
Number of Epochs 25
Max test Accuracy(last epoch) 45.3%
No. of Parameters 1738714
Inference time(s) 0.0046

Table V: Parameters for the Densenet

Figure 54: Pb-Lite output for image 9



Figure 55: (a)Texton Map, (b)Brightness Map, (c)Color Map,
(d)Texton gradient, (e)Brightness gradient and (e) Color
gradient for image 10

Figure 56: (f) Canny baseline and Sobel baseline for image
10

Figure 57: Pb-Lite output for image 10



REFERENCES

[1] ResNets, HighwayNets, and DenseNets, Oh My! - A guide to Deep Nets

https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32

	PHASE 1: SHAKE MY BOUNDARY
	Oriented DoG Filters
	Leung-Malik Filters
	Gabor Filters
	Texton Map T
	Brightness Map B
	Color Map C
	Gradient Maps
	PB-Lite Output

	PHASE 2: Deep Dive on Deep Learning
	Initial neural network
	Improving accuracy
	ResNet
	ResNeXt
	DenseNet


	Conclusion
	References

