
Homework 0: Alohomora!
Rohitkrishna Nambiar (115507944)

University of Maryland
College Park, Maryland 20740

rohit517@umd.edu

Abstract—In this paper, we implement the probability of
boundary (pb) boundary detection algorithm in Phase 1. In Phase
2, we start with building a convolutional neural network (CNN)
for image classification. CIFAR-10 dataset is used. Further,
methods to improve classification accuracy are studied and
implemented along with building the state of the art networks
such as ResNet, ResNeXt and DenseNet.

I. INTRODUCTION

The paper is divided as follows. We first cover sections
of Phase 1 which includes the overview, filter banks, texton,
brightness and color maps, along with their gradients and the
final pb-lite output for a test image. In the last section, we
cover Phase 2 which is a deep dive into deep learning. A
convolutional neural network (CNN) is trained and analyzed
for image classification.

II. PHASE 1: PB-LITE BOUNDARY DETECTION

Boundary detection is an important, well-studied computer
vision problem. Clearly it would be nice to have algorithms
which know where one object transitions to another. But
boundary detection from a single image is fundamentally
diffcult. Determining boundaries could require object-specific
reasoning, arguably making the task hard. A simple method to
find boundaries is to look for intensity discontinuities in the
image, also known of edges.

Classical edge detection algorithms, including the Canny
and Sobel baselines we will compare against, look for these
intensity discontinuities. The more recent pb (probability of
boundary) boundary detection algorithm significantly outper-
forms these classical methods by considering texture and
color discontinuities in addition to intensity discontinuities.
Qualitatively, much of this performance jump comes from the
ability of the pb algorithm to suppress false positives that the
classical methods produce in textured regions.

III. FILTER BANKS

The first step in the pb lite boundary detection pipeline is
to filter the input image with a set of filter banks. Filtering is
very important in low level image processing. In our pipeline,
filtering with a set of filter banks is used to generate a texton
map which depicts the texture in the image by clustering the
filter responses. Three different sets of filter banks have been
implemented below and are explained as follows.

Fig. 1. Pb-lite Algorithm

A. Oriented DoG Filter Bank

The first set of filter banks is a Derivative of Gaussian (DoG)
filter. To generate a DoG filter, we first create a gaussian kernel
given the value of σ and the convolve it with a sobel mask.
The sobel operator (S) acts as a derivative operator which is
given by the following kernel

S =

−1 0 1
−2 0 2
−1 0 1

 (1)

DoG = S ⊗G (2)

Now, we rotate the DoG filter obtained in the above step to
obtain a filter bank at a single scale. This is done for another
scale (σ) and we obtain a filter bank at different scale and
orientations. During implementation we see that the size of the
Gaussian kernel also plays an important role. If the kernel is
smaller, then we have a gaussian that is not smooth. Further,
smaller sized kernels can have the opposite effect(image is
darkened) when sobel mask is convolved. We see that a good
measure of choosing the kernel size is to have it six times the
standard deviation or radius. We use a 13×13 gaussian kernel
with sigma values [1.2, 1.4] and number of orientation as 16.

B. Leung-Malik Filters

The Leung-Malik filters are a set of multi-scale multi-
orientation filter bank with 48 filters. The first 36 filters
consists of the first and second derivative of Gaussian filters
at 3 scales and 6 orientations. We then have 8 Laplacian
of Gaussian filters and 4 Gaussian filters. There are two
versions of the LM filter namely LM Small (LMS) at scales



Fig. 2. Oriented DoG Filter Bank

σ = {1,
√
2, 2, 2

√
2} and LM Large (LML) occuring at

σ = {
√
2, 2, 2

√
2, 4}. The first and second derivative of

Gaussian occur at first three scales with σx = σ and
σy = 3σx. The Gaussians occur at all the basic scales and
LOG occur at σ and 3σ.

One of the observations during implementing the Leung
Malik filter for LOG is that when we have a higher σ and
relatively less value of kernel size, after convolution, we
observe that the image is darkened. The solution to this issue is
to increase the filter size as mentioned in the previous section.
The LMS filter bank implemented is shown in Fig.3.

Fig. 3. Leung-Malik Filter Bank

C. Gabor Filters

Gabor Filters are designed based on the filters in the human
visual system. A gabor filter is a gaussian kernel function
modulated by a sinusoidal plane wave. To implement the
Gabor filter, the real component of the filter was used given
by

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) cos(

2πx′

λ
+ ψ)

(3)

where λ is the wavelength of the sine wave, ψ is the phase
offset, σ is the standard deviation of gaussian and γ is the
spatial aspect ratio. A kernel size of 37, λ = {4, 6, 8, 10, 12}
and σ = {4, 4, 6, 8, 14} was chosen. W observe that as the
parameter γ changes the elongation of the gaussian changes.
γ with value 1 was chosen to have a equal elongation along y
and x. As mentioned above, the Gabor filter bank consisted of
5 scales and 8 orientations. The filter bank implemented can
be seen in Fig.4.

Fig. 4. Gabor Filter Bank

IV. TEXTON MAP

We now create a texton map by using all the filters generated
in the previous section. The texton map is a quantized image
where the pixel values range from (1 : K) where K is the
number of clusters. Before we proceed to clustering, each filter
is convolved with a gray scale input image. Thus N filters
produce a 3D vector where the depth is equal to the number
of filters. We use K = 64 in our case. A sample texton map
for an input image is given in Fig.6.

Fig. 5. Input Image

V. BRIGHTNESS MAP

Similar to texton map, we compute the brightness map (B)
by first converting the input image to gray-scale and then
clustering the pixels. Here we use 16 clusters. The output is
shown in Fig.7



Fig. 6. Texton Map

Fig. 7. Brightness Map

VI. COLOR MAP

Similar to texton and brightness map, we compute the color
map (C) of the input image by clustering the RGB pixels. Here
we use 16 clusters. The output is shown in Fig.8

Fig. 8. Color Map

VII. TEXTURE, BRIGHTNESS AND COLOR GRADIENTS

To obtain Tg, Bg, Cg we need to compute differences of
values across different shapes and sizes. This can be achieved
very efficiently by the use of Half-disc masks.

A. Half-Disk Masks
Half-disc masks are pairs of binary images of half-discs.

They help us to compute the χ2 (chi-square) distances using a
filtering operation, which is much faster than looping over each
pixel neighborhood and aggregating counts for histograms.
The half masks were generated at different scales and orien-
tation. We have used 3 scales at [5, 10, 15] where each value
corresponds to the radius of the disk and 8 orientations. The
size of the kernel varies as the radius of the disk varies. The
half-disk implementation output can be seen below in Fig.9.

Fig. 9. Half-disk mask

B. Computing gradients
Tg, Bg, Cg encode how much the texture, brightness and

color changes at every pixel. They are computed by comparing
the distributions in left/right half-disc pairs. The gradient is
small if distribution is similar and it is large otherwise. The
distributions are compared using the χ2 measure. The number
of bins of the histogram is equal to the clusters formed in
each map. The output matrix is of the dimension M ×N ×K
where K is the number of filters. We then take the mean of
the matrix along the depth(N channel) where list of elements
at each pixel position can be though of as the features. The
output after computing gradients are given in Fig.10.

VIII. PB-LITE OUTPUT

The Pb-lite output is obtained by using the sobel and canny
baselines and combining with the gradients using the following
function

PbEdges =
(Tg +Bg + Cg)

3
�(w1∗cannyPb+ w2∗sobelPb)

(4)
The output of the Pb-lite is given below in Fig.11 along

with the sobel, canny and ground truth images.



(a) (b)

(c)

Fig. 10. (a) Texton Gradient (b) Brightness Gradient and (c) Color Gradient.

(a) Canny (b) Sobel

(c) Ground Truth

(d) Pb-lite

Fig. 11. (a) Canny output (b) Sobel Output (c) Ground truth and (d) Pb-lite
output.

IX. PHASE 2: DEEP LEARNING

A. Section 3.3

In this section, we implement a convolutional neural net-
work for the task of image classification on the CIFAR10
dataset. The architecture of the network is as follows shown
in Fig.12.

We see that this is a very shallow architecture implemented.
This network consists of two Conv − > Pool − > Norm
layers followed by a fully connected layer and the final output
layer. The total number of parameters trainable in the network
is 4,225,162. Adam optimizer was chosen with a constant
learning rate of 0.001. A batch size of 64 was chosen and the
network trained for 50 epochs. An accuracy of 53.44 percent
was obtained on the test set. The confusion matrix of the
trained model on test data is given in Fig.13.

Fig. 13. Test confusion matrix

On observing the training accuracy and loss curve as shown
in Fig.14 and Fig.15 respectively, we see that although the
network does a good job on the training set, it fails to achieve a
good accuracy on the test set. This maybe because the network
is not able to generalize well and hence performs poorly on
the test set.

Fig. 14. Training accuracy



Fig. 15. Training error

X. CONCLUSION

Thus we have successfully implemented the pb-lite bound-
ary detection algorithm and trained a shallow convolutional
neural network for image classification on the CIFAR-10
dataset.

REFERENCES

[1] CMSC733 HW-0, https://cmsc733.github.io/2019/hw/hw0/, 01/29/2018.
[2] Tensorflow, https://www.tensorflow.org/, 01/29/2018.

Fig. 12. Shallow architecture for image classification


