
Report
HW0

Gnyana Teja Samudrala
UID:115824737

I. PHASE-1

The boundary detection in the single image is a difficult
task. One can closely get the edges from the filters like Sobel
and Canny. But they are not continous boundaries they get
blended into the surroundings or even donot detect if its weak.
So we make use of a method proposed as probability of bound-
ary detection method to find the probability of a boundary to
be present. A simpler version of this is implemented in this
report, which is known as Pb-lite boundary detection. This
makes use of the filter banks, textons, brightness and color
map, also the knowledge from Sobel and Canny filters.

A. Methodology

The dataset of the images is provided and also their Sobel
and Canny filtered images are also provided. So the imple-
mentation requires us to find the Texton Map which can be
obtained by filtering the image through various kinds of filter
banks.
FilterBanks

These are the collection of normal kernels of a specific or
mixture of filters with different scales and orientations.

Derivative of Gaussian: The kernel of this filter is obtained
by taking the centre pixel as origin and calculates the other
corresponding values from the first derivative of the gaussian
equation. To get this into implementation separated the 2D
filter into two filters of X and Y componenets, which are
represented by gx and gy . The equations of which are as
follows

gx =
−x
2πσ4

e
−(x2+y2)

2σ2 , gy =
−y
2πσ4

e
−(x2+y2)

2σ2

These values are combined with the combination of angle
values to get the desired rotated DoG kernal. The final equation
would be

g = cos(α)gx + sin(α)gy

Leug-Malik: This filter bank is the combination of the first
two derivatives of the Gaussian, Gaussian itself and Laplacian
of Gaussian at different scales and orientations. There are two
version of this filter bank short and long respectively known
as LMS and LML.

The LMS consists of first and second derivatives of Gaus-
sian at scales σ = {1,

√
2, 2} with elogation factor of 3 (which

means σx = σ and σy = 3∗σx. The next are Gaussians at four
basic scales (σ = {1,

√
2, 2, 2

√
2}) and eight LoG filters with

elongation factor 3. The long version occurs at these basic

scales σ = {
√
2, 2, 2

√
2, 4} The equations used for Laplacian

of Gaussian is

LoG =
x2 + y2 − 2σ2

σ4
∗ e

−(x2+y2)

2σ2

2πσ2

Gabor: The Gabor filter contains Gaussian kernal with a
sinusoidal signal. So the equation would become complex.
But to build the kernal only the real part of the equation is
considered. So the equation forms up to be

g = e
−(x2p+γ

2y2p)

2σ2 cos(2π
xp
λ

+ ψ)

HalfDiskMasks
The half disks masks are created using the DoG filters

thresholded at specific values of low and high to get two masks
making a pair of half disks.
TextonMap
The texton map is created by applying the oriented Gaussian

filter bank and then K-Means clustering is done to get an ID
for each cluster. The chi-square distance measure is calculated
between the applied half disk mask pairs and a gradient value
is obtained for the textons.

Similar to this the brightness (gray scale image) and the
color gradient maps are created which are represented as Bg

and Cg . All these gradients are combined in a ratio with the
Sobel and Canny baseline images from which we get the
probabilities of the boundaries detected. The equation of the
probability is

P =
Tg +Bg + Cg

3
(0.5 ∗ Sobel + 0.5 ∗ Canny)

B. Results

The filter banks of all the three kinds are visualized in the
images from figures:s 1- 3
The table gives the idea about the parameters used in building
these kernals.

Fig. 1. Derivative of Gaussian filter bank

The next step is finding the texton map using the DoG filter
bank of kernal size 49, and scale [1,2,4,8] 16 orientations in
range [0,360]. From this we get an output of 64 channels and

Fig. 2. Leug-Malik filter bank

Fig. 3. Gabor filter bank

Fig. 4. Half disk masks

each pixel has 64 values which are clustered using K-Means.
The output of the Texture map is as shown in fig. 5

The brightness and color gradients are as in figs. 6 and 7

TABLE I
FILTER BANK PARAMETERS

Filter Bank Size Scale Orientation

DoG 25 2,4 16 equally in [00, 2400]

LMS 49 1,
√
2, 2, 2

√
2 6 equally in [00, 1800]

LML 49
√
2, 2, 2

√
2, 4 6 equally in [00, 1800]

Gabor 49 [5,10] 8 equally in [00, 3600]

Fig. 5. Texton Map of 1st image

Fig. 6. Brightness Map of 1st image

So the final boundary probability is in fig. 8

II. PHASE - 2

In this to find the class the image belongs to is implemented
by Convolution Neural Networks using Tensorflow. The first
architecture of the network is built with the help of the starter
code and the tutorials given. Then a few tweaks are performed
on that network like the filter sizes, strides, layers etc.,

First Neural Network

The architecture of the network is as given in the graph of
the tensor board fig. 18

Fig. 7. Color Map of 1st image

Fig. 8. Pb-lite boundary of 1st image

Fig. 9. Pb-lite boundary of 2nd image

The parameters of the network used to get the presented
results are in the table II. This is a very basic type of network.

Fig. 10. Pb-lite boundary of 3rd image

Fig. 11. Pb-lite boundary of 4th image

Fig. 12. Pb-lite boundary of 5th image

Second Network

In this network the architecture is changed by adding
few more layers to the network and changing the size of
layers.Batch normalization is performed in every layer, so the

TABLE II
THE PARAMETERS USED IN NEURAL NETWORKS IMPLEMENTED

Parameter First Second Third(ResNet)

Optimizer Adam Momentum Momentum

Learning Rate 1e-4 10e-3 1e-2

Momentum N/A 0.9 0.9

Batch Size 1 100(+5 every 10 epochs) 120(+10 every 5 epochs)

Epochs 35 40 80

Data augmentation Nill flipping flipping

Time of run 7:12:27 00:41:00 01:25:59

Number of parameter 1,429,322 1,437,834 570,970

Accuracy on test images 72.12 78.53 79.2

Accuracy on train images 97.716 93.824 89.278

TABLE III
THE ARCHITECTURE OF NEURAL NETWORKS IMPLEMENTED

Stage First Second Third(ResNet)

Conv1 [5,5,3,64] [5,5,3,64] [3,3,3,16]

Pool1 Max.pool(stride=2) Max.pool(stride=2) Avg.pool(stride=2)

Conv2 [5,5,64,64] [5,5,64,64] 5times of [[3,3,16],[3,3,16]]

Pool2 Max.pool(stride=2) Max.pool(stride=2) N/A

Conv3 [5,5,64,128] [5,5,64,128] 5times of [[3,3,32],[3,3,32]]

Pool3 Max.pool(stride=2) Max.pool(stride=2) N/A

Conv4 [5,5,128,256] [5,5,128,256] 5times of [[3,3,64],[3,3,64]]

Pool4 Max.pool(stride=2) Max.pool(stride=2) Global average

local3 flatten(256) flatten(256) flatten

local4 128 128 ,64 N/A

Softmax 10 10 10

Fig. 13. Pb-lite boundary of 6th image

bias layers were no longer needed. The image before passing
to the neural network it is standardized i.e the range of values
are changed from [0,255] to [-1,1]. Also the images are flipped
to increase the number of training data.

Increasing the batch size

Fig. 14. Pb-lite boundary of 7th image

Instead of decaying the learning rate the batch size is in-
creased. The learning rate is kept constant and the batch size
is increased at every 10 epochs interval by a value of 5. The
optimizer used is the Momentum optimizer with a momentum
of 0.9. The learning rate is increased compared to the previous
network as the batch size is increased the learning pace should
also be increased proportionally.

Fig. 15. Pb-lite boundary of 8th image

Fig. 16. Pb-lite boundary of 9th image

By making all these changes to the network the performance
of the network increased and the accuracy also increased by
a great factor.

ResNet

The architecture implemented is as layed out in the ref
paper. The ResNet-32 architecture is choosen and it has
16,32,64 number of filters and each block has five convolu-
tional layers. Each block of convolutional layer has a shortcut
path connected. To match the sizes the shortcut signal is strided
and padded. The filter sizes are all of 3X3. This network is
quick to achieve desired accuracy compared to the rest of the
networks.

The convolution blocks consists of two convolution layers
each of size 3X3, the first convolution layer has a filter which
is convolved with the input and then passed through batch
normalization and relu activation. The second layer doesnot
have relu activation but after it gets added to the shortcut the
activation is performed. At the starting of each block the size
of output is reduced by using a stride of 2 in the convolution
layer.

Fig. 17. Pb-lite boundary of 10th image

Results

The accuracy over each epoch is carried over the test and
train data and plotted in the graphs, the first 1000 images
are taken for this purpose. From the table II we can see the
accuracy increases as the convolution layers increases, most
importantly the accuracy on the test set increases which is
required. The parameters in the resnet is also less and the time
taken is also less for the resnet to be trained, as the epochs
for which it ran is greater.

REFERENCES

[1] DONT DECAY THE LEARNING RATE,INCREASE THE BATCH
SIZE https : //arxiv.org/pdf/1711.00489.pdf

[2] Deep Residual Learning for Image Recognition https :
//arxiv.org/pdf/1512.03385.pdf

[3] http : //6.869.csail.mit.edu/fa16/lecture/lecture3linearfilters.pdf
[4] http : //matlabserver.cs.rug.nl/edgedetectionweb/web/edgedetection

params.html

Fig. 18. Graph of the first network

Fig. 19. Graph of the second network

Fig. 20. Accuracy over each epoch on train data of 1st network

Fig. 21. Accuracy over each epoch on test data of 1st network

Fig. 22. Loss over epoch of 1st network

Fig. 23. Confusion matrix on training set of 1st network

Fig. 24. Confusion matrix on test set of 1st network

Fig. 25. Accuracy over each epoch on train data of 2nd network

Fig. 26. Accuracy over each epoch on test data of 2nd network

Fig. 27. Loss over epoch of 2nd network

Fig. 28. Confusion matrix on training set of 2nd network

Fig. 29. Confusion matrix on test set of 2nd network

Fig. 30. Accuracy over each epoch on train data of 3rd network

Fig. 31. Accuracy over each epoch on test data of 3rd network

Fig. 32. Loss over epoch of 3rd network

Fig. 33. Confusion matrix on training set of 3rd network

Fig. 34. Confusion matrix on test set of 3rd network

