
CMSC733
Homework 0

Jo Shoemaker
Computational Linguistics and Information Processing Lab

University of Maryland

Abstract—Boundary detection and image recognition are two
of the most fundamental tasks in computer vision. In this
assignment, we explore a simplification of the Pb-Lite method
for boundary detection on ten medium-sized images (around
400 by 300 pixels each), and simple neural architectures for
image classification on the CIFAR10 dataset. Unfortunately,
time constraints prevented the author from implementing the
ResNet, ResNeXt, and DenseNet architectures, and her existing
architecture is an utter failure for reasons that remain as future
work.

I. PHASE 1: PB-LITE

Pb-Lite is a boundary detection method that determines the
probability of a boundary at each pixel based on three sources
of information: color change, texture change, and brightness
change. Where all three are changing dramatically, there is
a high probability of a boundary. Detecting these changes
is nontrivial: one first needs to have a representation of the
image composed of discrete values for textures, colors, and
brightnesses. Color and brightness for a pixel are already well-
defined by its RGB and greyscale values, and so each pixel
can be assigned a discrete color and brightness bin based on
k-means clustering of these values. Determining texture is a
little more difficult. The Pb-Lite solution is to characterize
texture at a pixel as a vector of results of convolving the
greyscale image with various filters. These vectors are then
binned and mapped to an index by k-means clustering. Finally,
the by-pixel “gradients” in the color, brightness, and texture
domains are determined by comparisons of opposite pairs of
half-disc masks convolved with the image at different scales
and orientations.

In this assignment, we tested out the Pb-Lite algorithm on
ten images that were around 400 × 300 pixels each. The
sections below discuss each step of the algorithm in more
detail.

A. Color and Brightness Classification

For color binning, raw RGB pixel values across all ten
images were used to train k-means clustering for k=25. Figure
1 illustrates the resulting gradient-in-color maps for each of the
ten images. For brightness binning, the greyscale pixel values
across all ten images were used to train k-means clustering for
k=16. Figure 2 illustrates the resulting gradient-in-brightness
maps for each of the ten images.

B. Texture Classification

Unlike color and brightness, texture is not defined on a by-
pixel basis. However, by convolving our greyscale images with
filters that highlight value changes across subregions of the
image, the resulting convolutions assign each pixel a value
that characterizes its surroundings. The 147 filters generated
for this purpose are at varying scales and orientations. 24 of
these are square derivative of gaussian kernels (Figure 3), 75
come from the Leung-Malik filter set (Figure 4), and 48 are
Gabor Filters (Figure 5).

The resulting 147-value vectors for each pixel were assigned
to indices determined by k-means clustering with k=64. The
discrete-texture representations of each image are shown in
Figure 6, and the gradients in these textures in Figure 7.

C. Determining Gradients

To determine the by-pixel gradients in our color, brightness,
and texture spaces, we performed chi-squared comparisons of
convolutions with opposite half-disc masks for each discrete
color, brightness, and texture value. The chi-squared results for
each half-disc mask pair (shown in Figure 8) were averaged
together to obtain the final gradient result.

D. Results and Commentary

The final output of Pb-Lite (shown for our ten images
in Figure 9) is determined by averaging the three gradient
values at each pixel and multiplying by the average Canny
and Sobel baseline boundary likelihood for that position. The
results clearly catch more boundaries than the Sobel baseline,
which is unsurprising given that a Sobel filter at a single
orientation can’t pick up on boundaries that may lie at arbitrary
orientations. The Canny baseline is very comparable to my Pb-
Lite output, despite considering only grayscale derivative of
gaussian filter results. Instead of leveraging color and texture
information to eliminate spurious boundary candidates caused
by noisy brightness gradients, the Canny method uses a multi-
stage weed-out process. It’s not surprising that the strongest
boundaries that survive this weed-out process are very similar
to those found by Pb-Lite, since strong brightness changes are
often correlated with color and (larger-scale) texture changes.

There are a few things I could think of that make the Pb-Lite
algorithm less effective than it could be. For one, assigning
arbitrary index values to ranges of color/texture/brightness is
rather silly, since some bins are more similar than others and
may consistently appear next to each other in images. For
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Fig. 1. Figure 1: Color gradients for each image.

Fig. 2. Figure 2: Brightness gradients for each image.

Fig. 3. Figure 3: Derivative of Gaussian filters at nine- and 21-pixel scales
and eight and 16 rotations respectively.

example, if a region that is fairly consistent in texture steadily
changes from light blue to dark blue, that should be a cue that
both the darker blue shade and the lighter one belong in the
same bin or at least in ‘close’ bins. There is also no reason
one couldn’t apply the Canny weed-out procedure to Pb-Lite
boundaries as well to eliminate noise.

II. PHASE 2: NEURAL ARCHITECTURES

I am not a vision researcher, but it is my understanding
that deep convolutional networks are now the default for
all image processing tasks. Convolutional neural networks
(CNNs) are able to learn filters which behave similarly to the
hand-spun filters in Phase 1 by characterizing meaningful sub-
patterns within images on a per-pixel basis. By stacking these

Fig. 4. Figure 4: The Leung-Malik filter set for scales 1,
√
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layers—and usually downsampling to lessen the noise with
each stack—the network can learn more and more complex
patterns which begin to resemble abstract characteristics of
recognizable entities (e.g., the eye and nose pattern of a dog’s
face).

In this assignment, we were tasked with classifying the
CIFAR10 dataset of 50k 32×32 pixel images into ten classes.
Preliminary results of an attempted model are discussed below.

A. An Initial Model

My initial model (Figure 10) is based very heavily off of
the one from the official TensorFlow CIFAR10 tutorial. The
network consists of three convolutional layers of 64 filters each
followed by three fully-connected layers with 200, 90, and 10



Fig. 5. Figure 5: Gabor filters at 35, 51, 73, and 99-pixel scales and two
different wave frequencies with six orientations each.

nodes each. In hopes of simplifying the task of edge detection
early on, I separated the first convolutional layer into two such
that 36 filters were applied to just the luma channel and 36
were applied to the two chrominance channels. The last two
convolutional layers are immediately followed by max pooling
and downsampling. Each layer except the first is immediately
preceded by a RELU activation.

B. Training

The model was trained to minimize cross-entropy loss
according to the Adam Optimizer at a learning rate of 0.1,
β1 = 0.9, β2 = 0.999, ε = 1e − 8. The model trained for 20
epochs with a batch size of 125 images. For preprocessing,
images were converted to the luma-chrominance color space
and standardized to have pixel values in the range [−1, 1]. The
model never achieved performance significantly above chance
during any epoch (see Figure 11), so I didn’t bother with
running it on the test set. Other learning rates (0.05, 0.01,
0.001) and batch sizes (10,50) were attempted to no avail.
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Fig. 6. Figure 6: Discrete-texture representations of each image.

Fig. 7. Figure 7: Texture gradients for each image.

Fig. 8. Figure 8: Half-Disc masks at 9, 21, and 35-pixel scales and four
orientations. The left-side masks for all three scales are shown before and
above their right side counterparts.



Fig. 9. Figure 9: Pb-Lite output for each image.

Fig. 10. Figure 10: Initial Architecture

Fig. 11. Figure 11: Accuracy on the test set by epoch (left), cross-entropy loss by epoch (right).


