CMSC733: Homework 0 - Alohomora!

Srinidhi Sreenath

UID: 115526723

I. Phase 1

A. Filter Banks - Oriented DoG

I started by defining a 7×7 image matrix and filled it with values defining the standard Gaussian equation

$$
e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}
$$

x and y values are the pixel coordinates. I chose 2σ values for 2 scales - 1 and 2 .

To obtain the Derivative of Gaussians (DoG), I convolved the above gaussian image with a Sobel filter i.e a vertical derivative approximation matrix of 3×3.

Next is to obtain the orientations. Since 16 orientations are needed, define the rotations and rotate the DoG images. The result is shown below:

Fig. 1. DoG filter bank

Fig. 2. DoG filter bank
with the sobel filter.

There are 6 orientations for each of the 6 images i.e 3 first derivative images and 3 second derivative images. I define the orientations and wrap the 6 images with 6 orientations for each image. This results in 26 images of the filter bank.

Next, for the laplacian of gaussian, I create 8 gaussian images of size $41 * 41$ with σ values $1, \sqrt{2}, 2,2 \sqrt{2}$ and thrice the first 4 values. The images are filled with the equation:

$$
e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}
$$

Once I have the gaussian images, to obtain the laplacian of gaussian (LOG) filter, I convolve the images with a laplacian filter of size $3 * 3$. This results in 8 LOG filter images. The rest four images in the filter bank are regular gaussians at four basic scales. The result is shown in Fig 2.
 (

B. Filter Banks - Leung-Malik Filters

The LM filters require 3 scales i.e 3 gaussians to be used. Also $\sigma_{y}=3 \sigma_{x} . \sigma_{x}$ values to be taken are $1, \sqrt{2}, 2$. I started by defining 3 empty image matrices and filled them with gaussian values with the following equation:

$$
e^{-\left(x^{2}\right) /\left(2 \sigma_{x}^{2}\right)-\left(y^{2}\right) /\left(2 \sigma_{y}^{2}\right)}
$$

After filling up the image matrix values, first and second order derivatives need to be obtained. I obtained this by convolving the 3 image matrices with sobel filter i.e a horizontal derivative approximation matrix of $3 x 3$.

One time convolution gives first derivative. To obtain the second derivative, I convolve the first derivative image again

