AutoCalib

John Kanu
PhD Student, Computer Science, UMD
Email: jdkanu@cs.umd.edu

USING 2 LATE DAYS

Abstract-In this paper I present a method for automatically calibrating a camera, based on Zhang's method.

I. Initial Parameter Estimation

The objective is to determine the parameters K, R, t, k_{s} that minimizes reconstruction error. This is a non-linear, geometric error minimization. The least-squares problem cannot be solved analytically in closed form, or by linear least-squares. So I initialize the parameters using an estimation, which is then fed into an optimizer in the scipy.optimize package to return our result.

A. Camera Intrinsic Matrix

The initial estimate for the camera intrinsic matrix is determined using SVD to solve the equation

$$
V b=0
$$

, where variables V and b are defined in Zhang's method.
For each pair of model and camera image, I compute the 3-D and 2-D positions of camera points in each image, respectively. The 3-D positions for model points are assumed to have a value of 0 in the Z component. All points are normalized by mean and standard deviation, which in theory improves the performance of the algorithm. The equations are stacked in $V b=0$, and singular-value decomposition (SVD) is applied to solve for b. The parameters of K are then uniquely defined based on the values of b, as given in Appendix B of Zhang's paper.

B. Camera extrinsics

The extrinsic view parameters are computed in a few steps after the estimation of the intrinsic parameters. Given the calibration matrix K and the homography matrix H, a scale parameter λ is computed as

$$
\lambda=\frac{1}{\left\|A^{-1} \cdot h_{0}\right\|}=\frac{1}{\left\|A^{-1} \cdot h_{1}\right\|}
$$

and columns r_{0}, r_{1}, and r_{2} of R are computed as

$$
\begin{gathered}
r_{0}=\lambda \cdot A^{-1} \cdot h_{0} \\
r_{1}=\lambda \cdot A^{-1} \cdot h_{1} \\
r_{2}=r_{0} \times r_{1} \\
t=\lambda \cdot A^{-1} \cdot h_{2}
\end{gathered}
$$

C. Distortion parameter

The distortion parameter is initialized as $k_{c}=[0,0]^{T}$ under the assumption that the camera has minimal distortion.

D. Non-linear Geometric Error Minimization

Using scipy.optimize I minimize the geometric error defined by

$$
\sum_{i=0}^{M-1} \sum_{j=0}^{N-1}\left\|u_{i, j}-P\left(A, k, R, t, X_{j}\right)\right\|^{2}
$$

where $u_{i, j}$ are the observed 2-D image points, X_{j} are the 3-D model points, and P is the projection defined by these parameters from the model space to the image space.

II. Results

A. Camera intrinsic matrix

$$
K=\left[\begin{array}{ccc}
694.97446097 & -2.1214567 & 248.71275362 \\
0 & 691.17535932 & 449.23440652 \\
0 & 0 & 1
\end{array}\right]
$$

B. Reprojection Error

I compute reprojection error given image points $u_{i, j}$ and projected model points $p_{i, j}$ as

$$
\text { Error }=\frac{\sum_{i=0}^{M-1} \sum_{j=0}^{N-1}\left|u_{i, j}-p_{i, j}\right|}{M \cdot N}=0.539032299237
$$

C. Rectified images

Fig. 1: IMG_20170209_042606.jpg

Fig. 2: IMG_20170209_042608.jpg

Fig. 3: IMG_20170209_042610.jpg

Fig. 4: IMG_20170209_042612.jpg

Fig. 5: IMG_20170209_042614.jpg

Fig. 6: IMG_20170209_042616.jpg

Fig. 7: IMG_20170209_042619.jpg

Fig. 8: IMG_20170209_042621.jpg

Fig. 9: IMG_20170209_042624.jpg

Fig. 10: IMG_20170209_042627.jpg

Fig. 11: IMG_20170209_042629.jpg

Fig. 12: IMG_20170209_042630.jpg

Fig. 13: IMG_20170209_042634.jpg

