
Homework 1 - AutoCalib
Report
Ameya Patil

Department of Computer Science
University of Maryland

College Park, Maryland 20740

I. INTRODUCTION

The aim of this task was to calibrate a camera using the
technique described by Zhang. 13 images of a checkerboard
captured from different perspectives, from a focus locked
camera, were used for the purpose.

II. IMPLEMENTATION DETAILS

A. Deciding the representation of object points

The coordinates of the corners in the model image, in world
coordinates could be expressed in many ways depending on
how large or how small we wanted the squares to be. The only
restriction that had to be imposed was that the z coordinate
of all those points should be zero since we are assuming the
model image to be placed on the XY plane. So one possibility
was to consider a digital image of the chessboard at some
arbitrary magnification level, and apply the same procedure
to detect the chessboard corners. Other possibility was to use
the physical size of the chessboard box provided, and create a
hypothetical grid and thus populate the corners of the model
image. The guess was that either approach would work, that
we just had to be consistent across all the 13 images.

It turned out that the guess was right, using either approach
led to similar results for the camera parameters. The second
approach was chosen because having a unit of measurement
for the corner position meant we could ascribe some meaning
to the computed camera parameters and errors.

cv2.findChessboardCorners() was used for detecting corners
in the 13 images and cv2.cornerSubPix() was used to refine
the detection.

B. Selection of points for the homography

Homography was estimated using
cv2.getPerspectiveTransform() initially so as to ensure
correctness of the remaining procedure. Once the remaining
procedure was verified, homography was also computed using
the LM optimization algorithm with initial estimate given by
the DLT algorithm. Since only 4 corners are sufficient for the
initial estimate and for the opencv API, the 4 corner points
of the chessboard grid were chosen.

C. Scikit LM Optimize API

Using the scikit API for LM optimization took some time to
understand because of the way it requires the cost function to
return an array of error values to minimize - called a residual

array. After that, there was a little confusion about which
norm is to be used exactly, as most of the references used
the notation for L1 norm. The source code of opencv camera
calibration API was referred and L2 norm was used. Further,
the initial estimate provided to the cost function has to be 1D
array, and the parameters to be optimized were 2D matrices
(K, ks). This meant some packing and unpacking had to be
done to get the data in the required format.

D. Parameters to optimize

The initial implementation was trying to optimize all 9
values of the camera matrix(K). This resulted in the final
refined matrix having non-zero values in the lower triangle.
This is not desirable since it would give an incorrect estimate
of the actual camera parameters. So later revisions ensured
that only the upper triangle of the K matrix was optimized.
This change also resulted in lower loss at convergence in the
LM algorithm.

E. Distortion

As mentioned on the homework page, initial estimate for
radial distortion parameters(ks) was assumed to be 0 and
no tangential distortion was assumed at all. The estimated
distortion parameters were also found out to be very small
and so the rectification of the image did not result in any
significant change. Visually, no distortion effect was visible
in any of the images, so the results made sense. Rectification
was performed using the opencv cv2.undistort() API

F. Results

Initial estimates:

K =

∣∣∣∣∣∣
2050.24 1.36 753.28

0 2041.98 1368.86
0 0 1

∣∣∣∣∣∣
ks =

∣∣0 0
∣∣

After refinement using LM optimization:

K =

∣∣∣∣∣∣
2048.66 −6.68 723.28

0 2036.5 1361.96
0 0 1

∣∣∣∣∣∣
ks =

∣∣3.38 ∗ 10−8 −3.46 ∗ 10−14
∣∣

Reprojection error after image rectification: 2.26 per pixel

1



The image dimensions are 1512 x 2688 (w x h) and the
estimates pretty much convey the same

G. Images

As mentioned before, since the distortion parameters after
the refinement step were very close to 0, meaning that there
was not much radial distortion in the images captured and there
was negligible difference between the original and rectified
images. Further, in all the rectified images with reprojected
corners, the corners marked in blue are slightly off, which is
probably the reason for the reprojection error

III. CONCLUSION

This task has helped in gaining an understanding of camera
calibration, why it is essential and also the ingenuous simpli-
fications used by Zhang to make the process faster.

REFERENCES

[1] https://www.cs.umd.edu/class/spring2016/cmsc426/lectures/camera-
calibration.pdf

[2] https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr98-71.pdf

[3] https://prateekvjoshi.com/2014/05/31/understanding-camera-calibration/
[4] https://opencv-python-tutroals.readthedocs.io/en/latest/pytutorials

/pycalib3d/pycalibration/pycalibration.html
[5] https://webserver2.tecgraf.puc-rio.br/ mgattass/

calibration/zhanglatex/zhang.pdf
[6] https://lmfit.github.io/lmfit-py/fitting.html
[7] http://staff.fh-hagenberg.at/burger/publications/reports/2016Calibration/

Burger-CameraCalibration-20160516.pdf
[8] https://opencv-python-tutroals.readthedocs.io/en/latest/pytutorials/

pycalib3d/pycalibration/pycalibration.html

(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 1. Results for 1st image (top) and 2nd image (bottom)

2



(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 2. Results for 3rd image (top) and 4th image (bottom)

(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 3. Results for 5th image (top) and 6th image (bottom)

3



(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 4. Results for 7th image (top) and 8th image (bottom)

(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 5. Results for 9th image (top) and 10th image (bottom)

4



(a) Original image(left) with corners and rectified image(right) with
reprojected corners

(b) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 6. Results for 11th image (top) and 12th image (bottom)

(a) Original image(left) with corners and rectified image(right) with
reprojected corners

Fig. 7. Results for 13th image

5


	Introduction
	Implementation Details
	Deciding the representation of object points
	Selection of points for the homography
	Scikit LM Optimize API
	Parameters to optimize
	Distortion
	Results
	Images

	Conclusion
	References

