
CMSC733: Homework 1 - AutoCalib
Khoi Viet Pham

Email: khoi@terpmail.umd.edu
Use 2 late days

I. INITIAL PARAMETER ESTIMATION

This section presents my approach to estimate the camera
intrinsic parameters, the extrinsic parameters for each provided
image, and the distortion coefficients.

A. Approximate camera intrinsic K

For each input image, I use the function
cv2.findChessboardCorners to find all chessboard corners in
the image. Example of detected chessboard corners is shown
in figure 1.

The world coordinates for each corner are numbered from
1 to the number of corners on each row (6 in our homework),
and from 1 to the number of corners on each column (9 in our
homework). For example, this means that the top-left corner
has world coordinate (1, 1), and the bottom-right corner has
world coordinate (6, 9). From these world coordinates and
their image pixel coordinates, we can estimate the homography
between the model plane and each input image. With the
estimate homography matrices, I follow section 3.1 in [1] to
find the camera intrinsic parameters. Instead of assuming the γ
value (skewness of the 2 image axes) as 0, I explicitly compute
it based on the formulas in the paper.

Fig. 1. Example of detected chessboard corners.

B. Estimate camera extrinsics R and t for each image

From the estimated homography matrix and the computed
camera intrinsic, I follow section 3.1 in [1] to find the
camera extrinsic parameters for each input image. Because
the estimated rotation matrix does not satisfy the properties of
a rotation matrix as described in the paper, I also follow their
approach to estimate the best rotation matrix in appendix C.

C. Approximate distortion coefficients kc
I follow the instruction to use kc = [0, 0] as the initial

estimate.

II. NON-LINEAR GEOMETRIC ERROR MINIMIZATION

In this section, I use scipy.optimize to refine the estimated
parameters in the previous section.

Because my code keeps failing to find a good solution of the
distortion coefficients kc, I decide to write my own stochastic
gradient descent for it. After having found a good distortion
solution, I use them as the new initial values for kc. However,
my code that uses scipy.optimize still fails to optimize for a
better camera intrinsic matrix (the matrix doesn’t change after
usingscipy.optimize). Therefore, I suspect that my implemen-
tation is wrong and I look forward to seeing the solution for
this part.

III. OUTPUT

Following is the output of my code. I output 2 projection
errors, one is the model that doesn’t estimate the best rotation
matrix according to appendix C and one that does estimate it.
I also include matrix K as required below.

Finding corners in all images...
Done!
Estimating camera intrinsic parameters..
Done!
K = [2063.8982, 2.2726, 764.5863]
[0.0000, 2042.7786, 1333.7452]
[0.0000, 0.0000, 1.0000]
Finding extrinsic parameters for all images...
Done!
Finding distortion coefficients k1 and k2...
Done!
k1 = 0.003755, k2 = -0.019014
Performing non-linear geometric error
minimization...
Done!
K (after non-linear minimization) =



[2063.8982, 2.2726, 764.5863]
[0.0000, 2042.7786, 1333.7452]
[0.0000, 0.0000, 1.0000]
Re-projection error (without using estimated
rotation matrix: 0.759741
Re-projection error (using estimated
rotation matrix: 3.105491
Saving rectified images to Rectified_Imgs/

Rectified images are displayed below. Unfortunately, they
don’t differ much from the inputs.

Fig. 2. Output of IMG 20170209 042606.jpg.

Fig. 3. Output of IMG 20170209 042608.jpg.

Fig. 4. Output of IMG 20170209 042610.jpg.



Fig. 5. Output of IMG 20170209 042612.jpg.

Fig. 6. Output of IMG 20170209 042614.jpg.

Fig. 7. Output of IMG 20170209 042616.jpg.

Fig. 8. Output of IMG 20170209 042619.jpg.



Fig. 9. Output of IMG 20170209 042621.jpg.

Fig. 10. Output of IMG 20170209 042624.jpg.

Fig. 11. Output of IMG 20170209 042627.jpg.

Fig. 12. Output of IMG 20170209 042629.jpg.



Fig. 13. Output of IMG 20170209 042630.jpg.

Fig. 14. Output of IMG 20170209 042634.jpg.


