
CMSC733 Project 1: MyAutoPano
Abhiskek Kathpal

M.Eng., Robotics
University of Maryland, College Park

Email: akathpal@terpmail.umd.edu
USING 2 LATE DAYS

Jack Rasiel
School of Computer Science

University of Maryland, College Park
Email: jrasiel@cs.umd.edu

USING 2 LATE DAYS

Abstract—The task of this project is to stitch two or more
images and create a seamless panorama. Implementation is done
by two approaches, first approach is using traditional Computer
vision techniques and second approach is to use deep learning
techniques. For Phase 1 ,task is feature matching and finding
robust Homography. For Phase 2, two networks are implemented,
supervised and unsupervised for computing robust Homography.
The results obtained from these are analysed and compared with
the traditional Approach.

I. PHASE 1 - CONVENTIONAL PANORAMA STITCHING

A. Traditional Approach Overview

The Conventional Panorama Stitching Algorithm can be
implemented using the following steps:
1. Corner Detection using Harris or Shi-Tomasi Corners.
2. Implementing Adaptive Non-Maximal Suppression
Algorithm to avoid wierd artifacts in warping.
3. Computing Feature Descriptors.
4. Feature Matching using SSD.
5. Outlier Rejection Using RANSAC to estimate Robust
Homography.
6. Stitching/Blending various images together.

The pipeline is given by Fig. 1. and is discussed in detail
in the next subsections.

Fig. 1. Panorama Stitching Algorithm pipeline

B. Corner Detection

For the corner detection, 3 techniques have been used,
namely, Harris corner detector, Shi-Tomasi Corner Detector
and OpenCV’s Good Features To Track have been used
for this part. The main difference between Harris Corner
Detector and Shi-Tomasi Features is the response map
equation. Shi-Tomasi computes response map using minimum
eigen values.
The third implementation is using goodfeatures to track
which has inbuilt non maximal suppression. For other two
techniques, we have to implement adaptive non-maximal
suppression which is described in next section.

I have found that good Features to track works the best
among these. Harris and Shi-Tomasi corners give quite similar
results. I have included the output from all the implementations
in the figure below:

Fig. 2. Harris Corners

Fig. 3. Shi-Tomasi Corners

Fig. 4. GoodFeaturestoTrack

C. ANMS Implementation

Adaptive Non-Maximal Suppression algorithm is used to
find N strongest corners. For my code, best 100 corners have
been selected. The pseudo code for this is shown below:

Fig. 5. Adaptive Non-Maximal Suppression

The output after implementing this algorithm after corner
detection is shown below:

Fig. 6. Harris after ANMS

Fig. 7. Shi-Tomasi after ANMS

D. Feature Descriptors

Next step is to describe all the corner points by a feature
vector. For this, a patch of 40x40 is taken around that point
and is sub-sampled to 8x8 and blurred using Gaussian Bluring.
The output is then reshaped to 64x1 vector and standardization
is done to get mean 0 and variance 1. The output of one of
patch is shown below:

Fig. 8. 8x8 Feature Descriptor Patch1

Fig. 9. 8x8 Feature Descriptor Patch2

E. Feature Matching

Feature Matching is done by picking one points from first
feature vector and computing the SSD with all the other feature
descriptors. Distance Threshold is used to find the matched
pairs in the images. Draw matches inbuilt function of OpenCV
is used to display the output of feature matching.

Fig. 10. Shi Tomasi Initial Match

Fig. 11. Harris Initial Match

Fig. 12. Good Features to track Initial Match

F. RANSAC

The next step is to use Random Sample Consensus to
remove the outliers and find the robust Homography estimate.
The algorithm has following steps:
1. Select four feature pairs (at random), from image1 and
image 2.
2. Compute homography H between the previously picked
point pairs.
3. Compute inliers where SSD¡, where is some user chosen
threshold and SSD is sum of square difference function.
4. Repeat the previous steps until you have found more than
a particular percentage of inliers.
5. Keep largest set of inliers.
6 .Re-compute least-squares H estimate on all of the inliers.

The feature matching output after ransac is shown below:

Fig. 13. Harris After RANSAC

Fig. 14. Good Features to track After RANSAC

G. Image Stitching

For the Image Stitching, I have used 3rd party code which is
able to stitch two images. I was not able to solve the issue of
stitching if the images are not in ordered. If they are in ordered,
the algorithm works perfectly. There are some memory issues
if there are more than 4-5 images, the pano size got very large.
The final outputs of some of data are shown below:

Fig. 15. Warped Output

Fig. 16. Output1

Fig. 17. Output2

Fig. 18. Output3

Fig. 19. Output4

(a) Corners (b) Initial Feature Match

(c) After RANSAC (d) Blending

(e) Final Result

Fig. 20. Step-by-step visualization of out conventional pipeline.

II. PHASE 2, PART 1: SUPERVISED MODEL

A. Data Generation

To implement the supervised Homography Network, I have
generated dataset from MSCOCO Dataset. The input to this
supervised network is composed of 2 images and labels are 4
point homography.
Initially, I have saved all the data in pickle file but it was
taking a lot of memory and training was very slow when I
used that file. Then I decided to go with patch generation on
the go, so the memory used reduce to very low because only
image patches equal to MiniBatchsize is stored at one time.
The training time also reduced.

B. Architecture

The architecture implemented for Homography Net is de-
scribed in Detone et al. It was a similar to simple VGG
Network. It has 8 convolution layers with max pooling and
batch normalization. In the end, there are 2 fully connected
networks with dropout. The output for this network is 4 point
Homography. The architecture is shown in Figure below:

Fig. 21. Supervised Homography Network Architecture

The Tensorflow graph for this network is shown below:

Fig. 22. Tensorflow Supervised Graph

C. Training and Performance

Loss used in this network was L2 norm i.e.

||H4PtPred−H4Pt||2

During training, I initially used only 5000 images for training
but the output was not that good. The loss was not decreasing
properly. The output is shown below:

Fig. 23. Training Loss with 5000 images

Then I increased the Number of samples to 20000, the loss
started decreasing and it was shown in Fig. below. I was able
to run the code for only 50 epochs. The learning rate I have
used is 1e-4 with Adam Optimizer. The final training loss is
shown below:

Fig. 24. Loss per iteration

Fig. 25. Loss per Epoch

D. Results

Few outputs were generated by overlapping the new points
with the target points which are computed by doing random
perturbation. Green is the source. Blue is target and red is
predicted using supervised trained network.

Fig. 26. Output1

Fig. 27. Output2

Fig. 28. Output3

III. PHASE 2, PART 2: UNSUPERVISED MODEL

A. Data Generation

To implement the unsupervised Homography Network, I
have decided to go with patch generation on the go to keep
the memory usage low. For this network , I have stored both
patches concatenated along 4 corners of image1.

B. Architecture

Architecture of the unsupervised network consists of mainly
three parts:
1.HomographyNet - This network is same as Supervised
network and the output of this network is 4-point Homography.
2. TensorDLT - This layer of network is used to implement
DLT to get the 3x3 Homography Matrix in a differentiable
way. For implementing this part, I have referred official github
repository for Unsupervised Network.
3. Spatial Transformer Layer - The next layer applies the
3x3 homography estimate H output by the Tensor DLT to get
warped images. These warped images are necessary in com-
puting the photometric loss function i.e. L1 loss subtracting
the predicted warped image with the patch of 2nd image. The
function for this layer is given in utils.

The architecture of this unsupervised network is shown
below:

Fig. 29. Unsupervised Network Architecture

The Tensorflow graph for this Unsupervised Network is
shown below:

Fig. 30. Tensorflow Unsupervised Graph

C. Training and Performance

Because of these TensorDLT and Spatial Transformer Layer,
to back propagate properly learning rate is kept at low i.e. 1e-5
in comparison to higher learning rate for supervised network.

The Unsupervised required less data and is more accurate
than Supervised network. The training loss reached to satura-
tion in less number of epochs. The training loss for different
hyper parameters is shown below.

Fig. 31. Loss per epoch learning rate = 1e-3

Fig. 32. Loss per Epoch learning rate = 1e-5

IV. CONCLUSION

Three techniques are implemented to get the robust Ho-
mography and create a panorama by warping and blending.
The advantage of tradition approach is all the steps of ob-
taining the final output is visualized properly. But the deep
learning approaches are more accurate. The traditional image
approach depends on tweaking the parameters of anms and
Ransac where as deep learning parameters are independent of
particular image. For example, the checker board image is very
difficult to stitch with traditional approach.
The deep learning approach also runs much faster when
testing the data with given model in comparison to traditional
approaches. Unsupervised is much more complicated than
supervised but it is faster during training and gives better
results.
One disadvantage of deep learning approach, it requires you
to manually generate such a large dataset to work properly.
With small training data, the deep learning approach will fail
miserably.
Image stitching is common for both the traditional and deep
learning implementations. With better image stitching algo-
rithm, I could have improved my final outputs for this project.
I was not able to generate final panorama using deep learning
method, only found homography estimate.

REFERENCES

[1] Implementation: https://cmsc733.github.io/2019/proj/p1/
[2] DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. ”Deep

image homography estimation.” arXiv preprint arXiv:1606.03798 (2016).
[3] https://github.com/tynguyen/unsupervisedDeepHomographyRAL2018
[4] Nguyen, Ty, et al. ”Unsupervised deep homography: A fast and robust

homography estimation model.” IEEE Robotics and Automation Letters
3.3 (2018): 2346-2353.

[5] WarpImage: https://stackoverflow.com/

