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I. INTRODUCTION

The aim of this project was to stitch multiple images having
considerable content common between them. The homography
between the images was computed to get a measure of how
much a certain image needed to be transformed to make it
merge with the other image. This homography estimation was
done using 2 approaches - the classical approach and the deep
learning approach.

II. PHASE 1: CLASSICAL APPROACH

This approach is based on finding corners in the image,
followed by calculating features of the image at all these
corner points. These two steps are performed for all the images
to be stitched. After this, images are checked for adjacency
based on the corner features; better or more matches imply
that the images are adjacent. Corner pairs are then chosen
to compute the best homography matrix and apply it on the
corresponding image to bring it in the same plane as the other
image. The last step is to blend the two images. Each of the
above mentioned steps are described in detail below.

A. Corner Detection

Corners are characterized by changes in intensity in more
than one direction. The Harris corner detection algorithm uses
the Sobel filter to calculate the image gradients in both the X
and Y directions for each pixel. Based on these gradients, it
then calculates a score per pixel which tells us how likely the
pixel is to be a corner. We used the opencv cv2.CornerHarris
function for this part. The output of this function is an
image with a per pixel corner score. We then performed a
thresholding operation on the image to filter out the pixels
with a low corner score and retain only the strong corners.
The results are shown in Figure 1, Figure 2, Figure 3 and
Figure 4.

B. Adaptive Non-Maximal Suppression

Since corners cannot be perfectly detected, many pixels
around a true corner may also get marked as a corner after
the application of the Harris corner detection algorithm. To get
the true corners, we evaluated the strongest corner in a sliding
window of a user configurable size and retained it, while all

Sigurthor Bjorgvinsson
Department of Computer Science
University of Maryland
College Park, Maryland 20740

other corners in that window were rejected. This step is called
the local maxima filtering and it makes sure that detected
corners are not clustered around one another. However, another
possible issue that can arise is the unequal distribution of
corners throughout the image, for example, most of the good
corners are in the top left quarter of the image while the bottom
right quarter has only a few corners. To avoid such a situation,
we performed Adaptive Non-Maximal Suppression (ANMS)
of the corners. ANMS computes a compression radius metric
for each corner pixel. Compression radius of a pixel refers
to the radius of a circle centred at the pixel in which all the
corner pixels are weaker than the centre pixel. It then chooses a
user configurable number of corner pixels having the highest
suppression radii. This ensures that corners are not densely
populated in a certain region of the image. This is similar to
the local maxima filtering but takes into account the entire
image rather than a small window which also makes it an
expensive operation in terms of execution time. Performing
local maxima filtering before ANMS reduces the workload for
ANMS. The results are shown in Figure 5, Figure 6, Figure 7
and Figure 8.

C. Feature Matching

The next step is to extract features around all the corner
pixels in an image. This feature is used a characterization of
that corner pixel which enables us to match corners in different
images. A 40x40 patch was extracted around each corner pixel
from the image and a gaussian blur was applied to it. Corner
pixels around which such a patch could not be extracted
because they were very close to the edges, were skipped. The
patch was then downsampled to 8x8 and reshaped to a 64
element vector. So each corner in an image was characterized
by a 64 element feature descriptor. The images to be checked
for adjacency were then iterated over all its corners and a
matching corner in the second image was searched for using
the L2 loss between their feature descriptors. To visualize
these matches, we created a custom implementation of the
opencv cv2.drawMatches function. This was done in order to
avoid the syntactic requirements of the arguments passed to
the cv2.drawMatches function. The results are shown in Figure



(b) Corner Detection for Train Set 2 images

(c) Corner Detection for Test Set 3 images

(d) Corner Detection for Test Set 4 images

Fig. 1. Corner Detection for Train and Test images, marked in red, each
corner is 1x1 pixel

9, Figure 10, Figure 11 and Figure 12. Figure 13 shows an
example of bad match found in one of the test sets.

One issue that we were seeing here was the matching of
multiple corners in one image to the same corner in the other
image. To work around this issue, we changed the feature
matching code such that we have a strict one-to-one mapping
between the corners of the two images.

D. RANSAC

After matching features between two images, their matches
are not necessarily correct. With RANSAC, we select the

-

(b) Corner Detection for Custom Set 2 images

Fig. 2. Corner Detection for custom images, marked in red, each corner is
1x1 pixel

largest number of inliners that have similar transformation in
terms of distance from their matched feature. In a loop, we
select 4 random matched points (i.e. ’src’ and ’dest’) from the
list of matches. We calculate the homography matrix (H) for
the 4 pairs and then calculate the distance from the projected
points (by applying the H matrix on the ’src’ point) to the
’dest’ point. The distance is calculated from the sum of the
squared differences of the projected ’src’ and the ’dest’ points.
If the sum of the squared differences is below a threshold, it
is added to the list of inliners. Once 90% of the matches are
in the list of inliners or a number of iterations are exhausted,
the search for inliners ends. The next step of the RANSAC
algorithm is supposed to compute the Least Squared H. We
were unable to implement this step correcly and instead took
a shortcut. Instead of computing the Least Squared H we used
the H that included the most inliners. The results are shown
in Figure 14, Figure 15 and Figure 16.

E. Picking Best Match

For our algorithm to be robust, we wanted to be able to
take in a folder of images and stitch together any images
that fit together. The wrapper performs feature matching and
RANSAC for all pairs of images and stores a score for each
pair. The score is calculated by the NumNMng Zé’ﬁf;giwes for
each pair and each image is given an ID (1...N). Pairs are
created between 1 and 2...N and then between 2 and 3...N and
S0 on, creating a unique pairs without repetition. Before two
images are stitched, each image in the range of 1..N-1 searches
for the image that has the highest matching score. From those
lists, the highest pair score is selected for stitching.

When two images are stitched, their IDs are removed from
the stitching pool and a new image with ID N+1 is created. The
Corner Detection and ANMS is applied on the newly stitched




(a) Corner Detection for Test Set 1 imagesCorner Detection for
Test Set 2 images

(b) Corner Detection for Test Set 1 images

Fig. 3. Corner Detection for Test Set 1 images, marked in red, each corner
is 1x1 pixel

image, which is then paired with every other image in the pool
where Feature matching and RANSAC is performed. If images
have less than 8 matched features or less than 6 inliners, the
images are not stitched together. If there are no images that
pass this requirement, the images that are left in the pool are
written to the ’panos’ folder.

F. Blending Images

Aligning and blending the images was a difficult task on
its own. We attempted padding the image that was going
to be transformed so the its edges would be included in
the transformed image. The padding would be decided by
the values of the transformed corner points and the padding
applied on the left and top of the image we were stitching
to. This approach seemed like the logical approach but led to
offsets we had a hard time figuring out. The blending started as
overlap where we set the transformed image as a background
and applied the other image on top. This created a shortcut

for us where we did not have to worry about the seams of
the transformed image where pixels bled into the background
because of the tilt of the image.

After multiple iterations we finally got the locations of the
images right. We applied a transformation to the homography
matrix which moved the warped image into the frame of the
other image. Padding to the non-warped image was required
if the warped location was projected outside the non-warped
image boundaries.

To handle overlapping regions, we created a blended image
using cv2.addWeights() function. When combining the warped
and non-warped image, if both images had non-black pixels at
a given location, we selected pixels from the blended image;
if only the warped image or non-warped image had pixels, we
selected the pixels from them, respectively.

Here is where the seams started to really show. Because we
were selecting pixels from 3 different arrays, the gradient of
the pixel intensities resulted in the seam being more visible
(or close to black pixels because of pixel bleed after warping).
We had a few attempts at addressing this issue without much
success for example changing the alpha/beta value of the
addWeights by giving the non-warped image more weight and
setting a condition for the warped image pixels to have more
that a combined value of x to be included in the image to
counteract the pixel bleed on the edges after warping.

Another issue was that the edges of an stitched image were
black because of the change of perception. When this black
padding intersected the actual pixels, the gradient was large
and could be interpreted as a part of a corner. Our solution to
this was to create a alpha channel array that was initialized
after blending two images. This array had the same size as the
stitched images and was set to —1 if a pixel was too dark (i.e.
because the sum of the pixel value of edges were 0). During
corner detection on that image, corners that would be within
20pixels of a negative value would be filtered out. This alpha
channel array could also have been populated with the x,y
coordinates of where the stitched lines intersect which would
have partially mitigated the seam issue. A better stitching
algorithm would have been a priority before implementing
something like that.

G. Results

Our approach works well with few images but as more
images are stitched together, the more stitches and distortions
are added to the final image. We obtained the best results with
the configuration values shown in table I. The largest set we
applied the algorithm on (Train set 3) took about 12 minutes to
run. Resulting panoramas are shown in Figure 17 and Figure
18

H. Possible Improvements

1) Better Blending: The blending was definitely where
we could have improved most. The edges of where the
images intersect are taken as corners in the next iteration
of the algorithm creating a lot of noise. This noise is then
propagated and increases at each stitch making future stitching



(b) Corner Detection for Test Set 2 images

Fig. 4. Corner Detection for Test Set 2 images, marked in red, each corner is 1x1 pixel

Configuration Variable Value
NumFeatures 400
WindowSize 7
RansascDistanceThreshold 15.0
Ransaclterations 5000
FeatureMatchingRatioThreshold ~ 0.65

TABLE I
CONFIGURATION VALUES

harder and harder. Applying a better blending algorithm would
have allowed for greatly improving the performance of our
algorithm.

2) Weight to Location of Features: When images become
very large, there is a problem with features being located

in places that no image that will be stitched will contain.
for example, if the image is 3000px width, the features on
the edges should have more weight than the features in the
center. This might have created more features that would have
been more likely to be matched to other images. A possible
approach to that would be to apply ANMS on sections of the
image with different feature values.

1. Failed Panoramas

Some panoramas failed to be created when there were more
than 4 or 5 images. When our algorithm had combined so
many images with such a primitive blending algorithm, the
images became distorted. This resulted in images not being
able to finish their full panorama but ended up with two partial
panoramas. This distortion also creates homography matrices



(a) ANMS for Train Set 1 images

(b) ANMS for Train Set 2 images

(c) ANMS for Test Set 3 images

(d) ANMS for Test Set 4 images

Fig. 5. ANMS for Train and Test images, marked in red, each feature is a
5x5 pixel block

that are not correct like in Test set 2. When trying to combine
the last two partial panoramas the homography matrix between
them created a warped image of 33500x25740 which ended
up crashing because of lack of memory. These failed or partial
panoramas can be seen in figure 19

III. PHASE 2: DEEP LEARNING APPROACH

In the deep learning approach, we try to create a network
which learns the homography between a pair of images. There
are two kinds of approach within the deep learning approach
which have been described in detail in the subsequent sections.

(b) ANMS for Custom Set 2 images

Fig. 6. ANMS for custom images, marked in red, each feature is a 5x5 pixel
block

A. Data Generation

We decided to use the example in the paper with image size
of 128x128 using p value range of —32 < p < 32 as suggested
from the paper. First we started by generating patches and
labels and saving them in a folder. Later on we decided to
move this functionality to be done on the fly during training
and testing.

B. Supervised Approach

The supervised approach requires lots of data to be able to
be effective and to be able to learn the function of perspective
matching. Using the data generation for unlimited training
data, we attempted at implementing a network that would
perform well on finding out a pixel shift of patches and
from that figure out the homography matrix between the two
patches.

1) Network: The original network [2] had 8 convolution
layers with a fully connected layer and 8 layer output. We
built on that and implemented the network in Tensorflow.
Our network followed the architecture described but added
shortcuts. There are 3 shortcuts in the network, all leading
from the input layer to the input of every other convolution
layer. This was added just to play with the network a bit and
try to make it our own. We used ReLU activation function
along with batch normalization right after that. The network
has 34194568 parameters and is show in in Figure 20.

2) Results: We trained a model for 500 iterations using
batch size 64 and learning rate of 0.0001. the loss in the table
was the average of ||Hypt — Hypt||2 for all predictions. See
table II.

One forward pass of the supervised network took around
0.002 sec after the network was loaded and graph was initial-
ized on a GTX 1080 and about 0.01 sec on a GTX 1060M



(b) ANMS for Test Set 1 images

Fig. 7. ANMS for Test Set 1 images, marked in red, each corner is a 5x5
pixel block

Image Set  Avg. Loss  Avg. Corner Error ~ Avg. Forward Pass
Train 30.320 17.735 0.00215s
Validation ~ 30.728 18.023 0.00271s
Test 29.416 17.249 0.00270s

TABLE II

EXECUTION RESULTS OF SETS ON OUR TRAINED MODEL

The results of the supervised model were very disappointing
because of the results reported in the paper. The paper states
that they had a average pixel error of little more than 9.
When running the validation set, our average corner error was
reported around 8.5. When we tried to plug our model into the
wrapper tested the prediction in Figure 21, the results were not
what we expected as we will describe in the last sub-section.

3) Effect of Changing Batch Size During Testing: We were
unable to figure out why this was happening but when we
changed the batch size of the network during testing, the loss
of the network more than doubled. We tried talking with some
students but no one else seemed to be having the same issue.

We talked with UMIACS faculty Prof. Abhinav Srivastava who
told us that this was most likely because because the batch size
was being baked into the network during training. the batch
size was hard coded into the image placeholder but changing
that to None and retraining the network did not help. Table
IIT shows execution results when batch size is 64 which is
obviously much better.

Image Set  Avg. Loss  Avg. Corner Error
Train 14.845 8.549
Validation  14.639 8.446
Test 14.668 8.459
TABLE III

EXECUTION RESULTS USING BATCH SIZE 64

The homography estimation for our supervised network is
shown in Figure 21. This estimation was performed with one
image at a time, meaning a batch size of 1. As discussed
above, we were facing reduced accuracy with batch size of 1
which is evident in the figure.

C. Unsupervised Approach

Unlike the supervised approach, the unsupervised approach
computes the homography between a pair of images without
using explicit labels for the 4-point homography description.
The network used for this approach consists of 4 parts as
described below:

1) Regression Homography Model: This is exactly the
same network as was used in the supervised homography
detection approach. This network takes as input, 2 patches
extracted from the same image and one of them is warped
with certain homography. This model learns and predicts the
homography with which the two patches are related, in the
4 point formulation. This 4 point estimate is then added to
the 4 corners of the original patch to get an estimate of the 4
corners of the warped patch.

2) TensorDLT Network: This network takes as input the 4
corners of both the original and the warped patches. It then
formulates a system of linear equations and solves it using
singular value decomposition in a differentiable way so that
errors can be backpropagated through the network. This gives
us the (3x3) homography matrix. The network in a way, learns
the functionality of the opencv cv2.getPerspectiveTransform()
function in a differentiable way.

3) Spatial Transformer Network: This network takes as
input, the homography matrix predicted by the TensorDLT
network and the original image from which the original
patch was extracted. It then learns the application of the
homography on the original image to get the warped patch.
The network in a way, learns the functionality of the opencv
cv2.warpPerspective() function in a differentiable way.

4) Calculating Photometric loss: The warped patch ex-
tracted from the Spatial Transformer Network is then com-
pared with the ground truth warped patch using the LI
photometric loss. This loss is backpropagated through the
network.



(b) ANMS for Test Set 2 images

Fig. 8. ANMS for Test Set 2 images, marked in red, each corner is a 5x5 pixel block

5) Result: We were unable to train the unsupervised net-
work and there for do not have any results for it. The network
did not become better over time which we thought indicated
that it was not working. We gave it our best shot.

D. Wrapper

The wrapper in Phase 2 takes in a source folder and tries to
match images together. This wrapper is rather unsophisticated
because we had a hard time conceptualizing what part of the
classical approach was supposed to be used and what the
model should take care of and what we needed to implement.
Our wrapper expects that all images go together, starting from
the one with the name first in alphabetical order. The images
are resized to 128x128 and passed through the network to get
a prediction. This prediction is changed into a homography

matrix using cv2.getPerspectiveTransform and applied to a
image using the same transformation logic as in the phase
1 wrapper. This combined image is then put back into the
pool. We tried applying this wrapper on the test sets but we
were only able to generate one output image from test set
1 22. All other images exploded in size resulting in output
images as 36000x13800 and 41700x10955, making us run out
of memory.

IV. CONCLUSION

By working on this project, we have learned about the ho-
mography relationship between images, how is a homography
specified in the 4 point form or the 3x3 matrix form and how
can the homography equation be solved using singular value
decomposition. Further, we got an idea of how a system of



(b) Feature matches for Train Set 2 images

(d) Feature matches for Test Set 4 images, other images did not have enough matches

Fig. 9. Feature matches for Train and Test images
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(b) Feature matches for Custom Set 2 images

Fig. 10. Feature matches for custom images

(b) Feature matches for Test Set 1 images

Fig. 11. Feature matches for Test Set 1 images



Fig. 12. Feature matches for Test Set 2 images

(b) Bad feature matches for Test Set 4 images

Fig. 13. Bad feature matches for Train and Test images. These pairs did not come out of the RANSAC because of the poor feature matches
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(a) RANSAC for Train Set 1 images
-

thon chip

(d) RANSAC for Test Set 4 images, the bad matches for Test Set 4 (Figure 13) did not make it through RANSAC

Fig. 14. RANSAC foI lTrain and Test images




(a) RANSAC for Custom Set 1 images

(b) RANSAC for Custom Set 2 images

Fig. 15. RANSAC for custom images
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(b) RANSAC for Test Set 2 images

Fig. 16. RANSAC for Test Set images
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(b) Panoramas for Test Set 3 and Set 4 images

Fig. 17. Panoramas for Train and Test images
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(a) Panoramas for Custom Set 1 and Set 2 images

Fig. 18. Panoramas for Custom images
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(a) Failed panorama for Test Set 1 (b) Partial Panoramas for Test Set 2

(c) Partial Panoramas for Train Set 3

Fig. 19. Failed and Partial Panoramas
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(b) Unsupervised Network



(b) Homography estimation for images from test and validation set

Fig. 21. Actual homography (yellow) and homography estimated (red) by the supervised network
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Fig. 22. Panorama of Test Set 1 by Wrapper using supervised model
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