
CMSC 733 Project 1 Report
My Auto-Pano

Darshan Shah
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: dshah003@umd.edu

Mayank Pathak
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: pathak10@umd.edu

I. PHASE 1: TRADITIONAL APPROACH

In this section, we shall look into the implementation of
automatic panorama creation using traditional approaches of
Image processing and computer vision. The idea to is to find
similar matching regions within images, transform the second
image to match the reference image and finally blend them
together to form one continuous image.

The steps taken to achieve a panorama is as follows: 1)
Pre-processing 2) Harris Corner detection and Adaptive Non-
maximal Suppression 3) Feature Descriptor and Matching 5)
RANSAC outlier rejection 6) Blending Images together. Each
of these sections are explained in the following sections.

A. Corner Detection

Corners are considered to be the best interest points
and are proved to be effective in abstracting the features
of an Image. In order to detect corners, We have imple-
mented Harris Corner detection algorithm. To do so, we
first convert both the images into gray-scale and apply the
cv2.goodFeaturesToTrack() function. This function
calculates corner quality measure at every source in the image
pixel using Harris Corner detection algorithm and further
applies a non maximum suppression to get feature points
which are evenly distributed throughout the image. Figure 1
shows the output generated after this process. The number
of corners to be detected for this image was restricted to 60
corners.

Fig. 1. The points over the image indicate the output after implementing
Harris Corner detection and ANMS

B. Feature Descriptor

Next, we create a feature descriptor vector which accurately
captures the attributes of the corner detected in the previous
step. This is implemented in the GetDescriptor() func-
tion. The function takes the image and respective key-points
as input and outputs a feature vector of size (1,64). A patch of
size 40 x 40 is extracted around each corner and a Gaussian
blur filter is applied throughout the extracted patch. Once
blurred, the patch size is shrunk to 8x8 and further flattened
to get a vector of size 64. This vector is standardized so as to
make it invariant to brightness and illumination. The result is
now a feature descriptor of the given key-point.

C. Feature Matching

Feature matching is the process of finding feature corre-
spondences between two similar images. Feature matching
helps find similar regions which are later used to estimate
translation and rotation of points of second image with respect
to first image. The feature matching is implemented by first
taking one feature vector from first image and then computing
a sum of squared difference (SSD) with every other feature
vector from the second image. The key-points having the least
SSD value are said to be in maximum resemblance with each
other. To make the computation more efficient, and reduce
the number of calculations, We have created a Look-up table
which gets populated every time the SSD of new set of vectors
is computed. The ratio of the least 2 values corresponding to
every feature vector is taken (lowest distance/second lowest
distance). If this ratio is less than a threshold value of 0.6,
the match is accepted. else, it’s discarded. The idea is that an
ambiguous or bad match will have a ratio close to 1 whereas
unique matches will have a low ratio.

The final set of key-points and their correspondences are
displayed using a custom drawMatches() function. The Fig-
ure shows the output of key-point matching function. It is
clearly evident that there are several mismatches between the
elements. These shall be eliminated by further implementing
RANSAC on key-points.

D. RANSAC Outlier rejection

The Random Sample Concensus or RANSAC is a robot
method which we used to remove incorrect matches. The



Fig. 2. Feature Matching: Similar points are matched between the two images.

Fig. 3. Final Output after the application of RANSAC outlier rejection
algorithm.

RANSAC is implemented by using the inbuilt OpenCV pack-
age cv2.findHomography() which does the job of both
performing the RANSAC and computing homography.

E. Image Blending

There are several methods of Stitching two images together.
For this project, we have implemented a simple approach:
Alpha blending. A blank numpy array is created whose size is
equal to the resultant size of the 2 images. The alpha blending
technique is implemented using the formula

Iblend = αIleft + (1− α)Iright

The downsides of this method is the presence of a seam
line. The images being blended have different brightness and
illumination which makes the blending unnatural and distinct.

II. PHASE 2: DEEP LEARNING APPROACH

In this phase of the project, Homography estimation is done
using two different machine learning approaches: Supervised
Learning; and Unsupervised Learning. Deep learning approach
uses Convolution neural network to map 4-point homography
parameters between images and hence doesn’t need to learn
full (3×3) Homography matrix. Moreover, this approach skips
local feature detection, hence faster than traditional approach.

A. Data Generation

One of the most crucial factors for implementing deep
learning networks is the requirement of large amount of data
for proper training the network.

Fig. 4. Output After Blending

To meet the requirement, the data is prepared as suggested
by the instructors[1]. We generate almost unlimited number of
labelled images by random selecting a patch from each image,
applying random perturbation on each corners point, finding
homography matrix for the random transformation, warping
image with the found homography and then saving the images
and homography matrix as their labels.

Illustration of these steps are shown in figure 5. The image
patches of size 200×200 pixels are stacked upon each other
and saved as an image of size 200×200×2. The Homography
matrix for this image is saved as label with this image.

B. Supervised Learning

We implemented a Convolution Neural Network (CNN)
for this part of project. The network closely follows the
architecture of Oxford’s VGG Net. The network contains
8 Convolution layers followed by 2 fully-connected layers.
Batch normalization is applied after every convolution layer
and a max pooling layer of size 2×2 with stride 2 is applied
after every two convolution layers. The network takes input
image of resized to 128×128×2 and contains 4 Convolution
layers of filter size 64, followed by 4 layers of filter size 128.
A layer with dropout probability 0.5 is added before the first
fully-connected layer of 1024 units. The last fully-connected
layer produces 8 real-valued numbers. The architecture of this
network is illustrated in the Figure 6.

The predicted outputs are then compared with the true labels
and the loss is calculated using the Euclidean (L2) loss. The
test/train accuracy over epochs and loss value over epochs are
then plotted in results.

C. Unsupervised Learning

From the results obtained by supervised learning implemen-
tation, it can be observed that for images with significant illu-
mination changes or images having large viewpoint difference,
the network performance has vast scope of improvement[2].
Also, it requires ground truth labels for training. As stated
in the instructions, an unsupervised learning algorithm is



(a) sample training image with patch marked by rectangular
lines

(b) Dashed box representing perturbed box

(c) skewed image warped with the homography obtained

(d) Patch Pa and Patch Pb

Fig. 5. Data preparation steps

Fig. 6. Supervised HomographyNet Implementation

Fig. 7. Comparison of homography estimation methods.

implemented in this later part of this project and has been
discussed in this section.

To start with, the same VGGNet architecture is implemented
to get the H̃4pt. The dashed line in the figure 7 shows the addi-
tions to the regression model that was applied to the supervised
learning algorithm. A TensorDLT layer is added followed by a
Spatial Transformation layer before calculating the pixel-wise
photometric L1 loss. This loss is then backpropogated to the
regression model to adjust weights.

1) TensorDLT: Tensor Direct Linear Transform layer is
added to obtain the differential mapping from the H̃4pt to
3×3 homography parametrization matrix. This layer applies
linear transformation to tensors, while preserving differential
property to support backprop. This approach fails if the
corresponding points are collinear.

2) Spatial Transformation Layer: This layer applies the
obtained 3×3 homography estimation to the input image,
creating a warped image to get the warped pixel coordinates
and hence calculating loss. This layer is also differentiable.



(a) Actual Images

(b) Panorama Output using Traditional Approach

Fig. 8. Training Set 1

III. RESULTS

This section shows us the final results obtained by the run-
ning the sample images on the traditional panorama algorithm.

A. Training Images

B. Testing Data

This Section Shows the Output from the given testing Data.

C. Phase2: Deep Network Approach

1) Supervised Learning: We used the starter code provided
to implement this phase of our project. The network architec-
ture, as explained earlier, was implemented in ’Network.py’
file which returns the H̃4pt to the ’Train.py’ file. However,
we are facing some ValueError in tensorflow, and couldn’t get
it working. We Tried out best to debug this error, but were
unsuccessful.

2) Unsupervised Learning: We implemented the Tensor-
DLT algorithm as suggested by Ty Nguyen et al. in their
paper ’Unsupervised Deep Homography: A Fast and Robust
Homography Estimation Model’. Also, the spatial transforma-
tion layer is implemented with photometric loss, but due to the

(a) Actual Images

(b) Panorama Output using Traditional Approach

Fig. 9. Training Set 2

(a) Actual Images

(b) Panorama Output using Traditional Approach

Fig. 10. Training Set 3



(a) Actual Images

(b) Panorama Output using Traditional Approach

Fig. 11. Custom Training Set 1

(a) Actual Images

(b) Panorama Output using Traditional Approach

Fig. 12. Custom Training Set 2

(a) Input Images

(b) Output after feature Matching: The given test images being
symmetric in nature, there are being a lot mismatches in feature
matching. leading to a inaccurate panorama creation

(c) Panorama Output.

Fig. 13. Results from Test Set 1



(a) Input Images from Test Set 2

(b) Output after feature Matching and RANSAC

(c) Panorama Output for 8 images.

Fig. 14. Results from Test Set 3

above mentioned error in tensorflow, this part is not working
as well.

Hence, as of now, the results for this phase are not included
in this report. However, we are continuing working on debug-
ging the error and will submit again if results are satisfying.

IV. CONCLUSION

From our experience with working on this project, We
found the traditional methods to be more reliable and easy
to begin with. But it appears that Deep learning methods
might overcome some of the limitations provided by tradi-
tional methods such as Robustness to noise and need for
tweaking/preprocessing images according to the scene being

utilized. Meaning, same preprocessing steps might not help for
images of all kinds. deep learning methods on the other hand,
are trained using a diverse dataset of images, hence are more
agile and robust in performance. On the downside, they are
tedious to develop and require a lot of tweaking and testing
before we arrive at the right parameters and hyper-parameters.

REFERENCES

[1] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep
image homography estimation. CoRR, abs/1606.03798, 2016.

[2] Ty Nguyen, Steven W. Chen, Shreyas S. Shivakumar, Camillo J. Taylor,
and Vijay Kumar. Unsupervised deep homography: A fast and robust
homography estimation model. CoRR, abs/1709.03966, 2017.


