CMSC733 Projectl: MyAutoPano!

Srinidhi Sreenath John Kanu
Robotics Graduate Student PhD in Computer Science
University of Maryland University of Maryland

Abstract—The aim of this project is to implement an end-
to-end pipeline to perform panorama stitching given a set
of unordered images using both traditional computer vision
techniques and the deep learning approach.

PHASE 1 - PANAROMA USING TRADITIONAL COMPUTER
VISION TECHNIQUES

The first step is to capture a set of images to be stitched
into a panorama. A set of images to be stitched for panorama
is shown below.

e

SRR

The stitching process is explained using images 1 and 2.

Corner Detection

The aim of this step is to detect corners spread all across
the image to avoid weird artifacts in warping.

Harris features: The first method used here is harris
corners. The images are converted to grayscale from color
for corner detection. A grayscale image is shown below.

|
\

Harris features were extracted using cv2.cornerHarris with o a maximum filter is applied to the grayscale image to

block size = 2 and aperture parameter for Sobel operator = get local maxima values. Input to define the filter size is
3. To get the optimal corners, a threshold of 0.01 times the chosen as 25. When a small filter input size was used, a
max value of the harris detections. The corners detected on lot of local maxima is detected (in range of 10000). A
the images are marked and shown below. large filter input size reduced the number of local maxima

coordinates to obtain (reduced to range of 3000).
o The local max values are used to create a binary mask.
o The local maxima coordinates are then extracted from the
binary mask.
After the local maximas are obtained, the ANMS algorithm
is used to detect 100 strong points. The output of the ANMS
detected strong corners are as follows:

Lot ° & ’ LAk

9, B b

- .3 - . . ,’.’ {

- . 0

- | . e 1
% - YA

i ' ® o: oo. ;)"",

DA

~

Adaptive Non-Maximal Suppression (ANMS): The objective
of this step is to detect corners such that they are equally
distributed across the image in order to avoid weird artifacts
in warping.

Since the amount of corners detected are more and not
equally spaced, there will be weird artifacts in warping.
To avoid that, out of the N strong corners which are local OpenCV’s good features to track: OpenCV has
maximas, a set of best corners is chosen by implementing the inbuilt implementation to detect strong corners using
ANMS algorithm. cv2.goodFeaturesToTrack. 500 corners were detected using
this, with quality level 0.01 and minimum distance between
ANMS algorithm is implemented to choose 100 best cor- each corner as 10. The output of the corners detected is
ners. The coordinates for strong corners is extracted as follows: shown below:

The above results are better than the ANMS output and
hence the strong corners obtained from this for feature de-
scription and matching.

Feature Description

Once the strong corners are obtained, each is now a feature
point and has to be described by a feature vector to encode the
information of each feature by a vector. The following steps
are used to describe each feature by a vector:

e a patch of size 40240 is extracted around the feature
point.

o A Gaussian filter is applied to patch of kernel size (5, 5)

o The patch is resized to an 8z8 image. A sample of such
a patch is shown below:

e The patch is reshaped to a 64x1 vector.

o The vector is standardized to have zero mean and variance
of 1. Standardization is used to remove bias and to
achieve some amount of illumination invariance. This
vector now represents the feature point.

Feature Matching

Now that each feature point is described by a feature
vector, a feature point in first image is to be matched with
the corresponding feature point in image 2. To do this, for
each feature point in image 1, the sum of squared distances
(SSD) for the corresponding feature vector is calculated with
each and every feature vector in image 2.

Once the SSD’s are calculated, the minimum and second
minimum SSD values are obtained. A ratio is defined which
is basically minimum SSD value over second minimum SSD
value. If the ratio is below a threshold, then the feature point
is matched with the feature point corresponding to minimum
SSD value.

A threshold value of 0.85 was used initially and a lot of
mismatches still occurred. The threshold is now chosen to be
0.5 which gave sufficient matches and very less mismatches.

The matches obtained are shown below:

This is solved like a Az = b system and the homography
matrix is obtained.

Warping and blending the images

The next step is to warp one image wrt another to transform
| the first image to the plane of the second image using the
homography matrix obtained. The first image is warped to the
plane of second image and the warped image is shown below:

RANSAC for outlier rejection and to estimate Robust Homog-
raphy

To eliminate some of the mismatches, a robust method
called Random Sample Concensus or RANSAC to compute
homography. The RANSAC algorithm is as follows:

o Select four feature pairs (at random), p; from image 1,
p; from image 2.

e Compute homography H between the previously
picked point pairs. This was done using the
cv2.getPerspectiveTransform.

« Compute inliers where SSD(p;, H * p;) < 60.0. where
60 is a threshold.

o The above steps are repeated for either 10 iterations or
when 90% of the points are found to be inliers.

o The set of inliers is then used to show the matching.

The matches obtained after RANSAC are shown below: . .
To blend the images, the new translation for the warped

image origin is calculated using the Homography matrix i.e
translatedorigin = H % origin where origin = [0,0,1].
The translation coordinates are used to compensate the origin
of the second image and then the second image is simply
placed at the compensated coordinates as it origin.

Sometimes, there will be less amount of matched features
which results in RANSAC unable to be performed. Therefore
when the matched features are very less, the image is ignored
for stitching/ blending.

The least squares homography matrix is recomputed then
using only the inlier points by direct linear transform. Instead
of using SVD of the system, a known constraint is used. The
last element of the homography matrix is known to be 1 i.e
hg = 1. This is used to set and convert P matrix into 929
matrix and system will become non-homogeneous.

“

—x; -y -1 0 0 0 xixp »x)

1 a1 o7
0 0 0 —x1 -»m =L xip vy ¥ || w2 0
-x2 -y -1 0 0 0 =xaxi oyaxh x5 || p3 0
0 0 0 —x2 -y -1 x5 »yh W ||l 4 0
PH=|—-x; -y -l 0 0 0 x3xf wxy x| h5|=]0
0 0 0 —x3 -y =l xyy oy || R6 0
—xs —ys -1 0 0 0 xgxf yaxi X} 7 0
0 0 0 —xs —yps -1 xuy, yay o || "8 0
o o o o o o o o 1|91 LI

The final blended image is shown below: Some other panoramas stitched are shown below:

The final panorama constructed is shown below:

The images are read and the middle image is found and left When the number of images are too high, some images
stitching and right stitching is performed. However, for chess aren’t stitched because when matched features are less, the
board set, the result was better when the images were read image is ignored for blending.
sequentially.

II. PHASE 2: DEEP LEARNING APPROACH

In this phase, we implemented two neural networks for
homography estimation. One is supervised, and the other is
unsupervised.

A. Data generation

Image patches were selected uniformly randomly within the
patchable region of the image. Each patch is 64 pixels in height
and widght.

Color channels are averaged to convert each image to
grayscale. Converting each color to grayscale reduces the
number of channels, and therefore reduces training time. We
assume that collapsing the color channels does not present a
significant loss of information.

Patches are warped as described in the project specifications,
with a maximum perturbation amount of 10 pixels.

B. Supervised Approach

In this section we implemented the same network architec-
ture as described in [1]. The network takes a 64x64x2 tensor
as input representing the two warped and unwarped patches.
The network consists of 8 convolutional layers and 2 fully-
connected layers. The final layer predicts the 8-point vector
representing the difference between the corner points of the

patches.

Fig. 1. Supervised network architecture

Fig. 2. Tensorboard graph

1) Training: We trained the network using 2 Nvidia Tesla
P100 GPUs on the Google Cloud Platform. We minimized the
L2-norm of the difference between the predicted corner point
translations H,p; and the actual translations Hyp;. The loss
function is given as

||Hapt — Haptl|2

Figure 3 shows the loss curve over 3000 iterations.

25.0
20.0
15.0
10.0
5.00

0.00

0.000 1.000k 2.000k 3.000k

Fig. 3. Supervised network loss

C. Unsupervised Approach

In this section we also implemented the same network
architecture as described in [1]. The network takes the same
concatenation of two patches and outputs the warped patch.

= - = Hipe ™ | Jensonir | Ca
1 |

Fig. 4. Supervised network loss

Fig. 5. Tensorboard graph

1) Training: We trained the network using 2 Nvidia Tesla
P100 GPUs on the Google Cloud Platform. We minimized
a photometric loss function, the L1-norm of the difference
between the predicted image w(P4) and the original patch
P4. The loss function is given as

l[w(Pa, Hapt) — Pg)l|1

Figure 10 shows the loss over 3000 iterations.

0.360 -
0.340 |
0.320

0.300 -
0.280 -
0.260 |

0.000 1.000k 2.000k 3.000k

Fig. 6. Unsupervised network loss

We finally present the loss scores after 3000 iterations.

Network Train Validation | Test
Unsupervised | 10.9343 | 10.9743 10.8850
Supervised 11.3791 | 11.4471 11.4067

2) Estimated homographies: Below are images from the
test dataset, overlayed with the homography estimated by our
supervised learning model and unsupervised learning model.

Fig. 7. Supervised

Fig. 8. Supervised

Fig. 9. Supervised

Fig. 10. Supervised

Fig. 11. Unsupervised

Fig. 12. Unsupervised

Fig. 13. Unsupervised

Fig. 14. Unsupervised

