
CMSC733: Project 1 - MyAutoPano
Khoi Viet Pham - Gnyana Teja Samudrala

Email: khoi@terpmail.umd.edu - sgteja@terpmail.umd.edu
Use 1 day late

I. PHASE 1: TRADITIONAL APPROACH

In this section, we will present in details our approach to
perform image stitching on multiple images. Here, we make
the assumption that consecutive pair of images share at least
an overlapping region. With this assumption, our algorithm is
as follows: given a set of N images (indexed from 1 → N ),
we’ll choose the image with index bN/2c as the anchor image.
This means that we will perform perspective transformation on
all remaining images so that we can transform them into the
image plane of the anchor image. In the following subsections,
we will illustrate figures of our intermediate results on each
pair of consecutive images.

We mainly follow the steps listed in the instructions. The
algorithm consists of 6 main steps: 1) corners detection
2) adaptive non-maximal suppression on detected corners
3) features extraction 4) features matching 5) homography
estimation with RANSAC 6) warping and blending.

A. Corners Detection

The first step in the algorithm is to detect corners in all
input images. Here, we use Harris Corner Detection algorithm
to accomplish this task. All train/test/custom set images with
detected corners are presented from figure 1 to figure 9.

Fig. 1. Corners detected using Harris algorithm on Train/Set1 images.

Fig. 2. Corners detected using Harris algorithm on Train/Set2 images.

Fig. 4. Corners detected using Harris algorithm on Test/Set1 images.

Fig. 5. Corners detected using Harris algorithm on Test/Set2 images.

Fig. 6. Corners detected using Harris algorithm on Test/Set3 images.

Fig. 7. Corners detected using Harris algorithm on Test/Set4 images.



Fig. 3. Corners detected using Harris algorithm on Train/Set3 images.

Fig. 8. Corners detected using Harris algorithm on CustomSet1 images.

Fig. 9. Corners detected using Harris algorithm on CustomSet2 images.

B. Adaptive non-maximal suppression

By looking at the output of the previous step in figure
1, 2, 3, we can see that the number of detected corners is
huge. There are a lot of redundant corners that we do not
need to process at all. Therefore, in this step, we will apply
adaptive non-maximal suppression (ANMS) in order to keep
only those corners such that are equally distributed across the
whole image.

It is worth noting that from the previous step, besides the
detected corners, the Harris Corner Detection algorithm also
produces a corner score map that describes how likely a pixel
is a corner. Using this corner score map, ANMS will locate all
local maximas (these are likely corners that we are interested)
and try to separate them as far from each other as possible
(so that these corners are equally distributed). In our code, we
select the best 500 corners with ANMS.

The outputs of ANMS on all train/test/custom set images
are presented from figure 10 to figure 18.

Fig. 10. Output of ANMS on Train/Set1 images.

Fig. 11. Output of ANMS on Train/Set2 images.

Fig. 13. Output of ANMS on Test/Set1 images.

Fig. 14. Output of ANMS on Test/Set2 images.

Fig. 15. Output of ANMS on Test/Set3 images.



Fig. 12. Output of ANMS on Train/Set3 images.

Fig. 16. Output of ANMS on Test/Set4 images.

Fig. 17. Output of ANMS on CustomSet1 images.

Fig. 18. Output of ANMS on CustomSet2 images.

C. Features Extraction

In order to stitch images together, we need to match the
corners (keypoints) on this image with the corners (keypoints)
in the other image. To perform matching, first, for each corner,
we need to produce a feature vector that encodes all local
information around it. We follow exactly the instruction to
perform this task.

Because 500 corners in each image (result we got from
ANMS) is too many to display in one single figure, we decide
to randomly select only 100 corners among all input images
and display their feature vectors.

These feature vectors on all train/test/custom set images are
presented from figure 19 to figure 27.

Fig. 19. 100 random feature vectors from Train/Set1 images.

Fig. 20. 100 random feature vectors from Train/Set2 images.

Fig. 21. 100 random feature vectors from Train/Set3 images.



Fig. 22. 100 random feature vectors from Test/Set1 images.

Fig. 23. 100 random feature vectors from Test/Set2 images.

Fig. 24. 100 random feature vectors from Test/Set3 images.

Fig. 25. 100 random feature vectors from Test/Set4 images.

Fig. 26. 100 random feature vectors from CustomSet1 images.

Fig. 27. 100 random feature vectors from CustomSet2 images.

D. Features Matching

We are now able to match corners between two consecutive
images. We also follow exactly the instruction for this task.
We use Gaussian with kernel equals 3 in order to blur the
40×40 window around each corner. For each corner in image
A, we look for its best and second best match in image B (in
terms of L2 distance between the feature vectors). If the ratio
between the best and second best match is lower than 0.70, we
select the best match. Otherwise, we reject it (this might not
be a good way to reject). Also after getting all the matching
points, if the count is less than a certain threshold value (10
wroked well) they are not considered. By doing this we can
avoid the images which are out of the sync in the panorama.

Matching results of each pair of consecutive images in the
train/test/custom set are displayed from figure 28 to figure36.



Fig. 28. Matching results on Train/Set1 images.

Fig. 29. Matching results on Train/Set2 images.

Fig. 30. Matching results on Train/Set3 images.



Fig. 31. Matching results on Test/Set1 images.

Fig. 32. Matching results on Test/Set2 images.



Fig. 33. Matching results on Test/Set3 images.

Fig. 34. Matching results on Test/Set4 images.

Fig. 35. Matching results on CustomSet1 images.

Fig. 36. Matching results on CustomSet2 images.

E. Homography Estimation with RANSAC

Looking at the output from the previous step, we can see that
there are a lot of outliers (features matched together but are
not correspondences). In this step, we can use Random Sample
Consensus (RANSAC) to remove those outliers. After those
outliers have been removed, we can compute the homography
matrix from the inliers. Here, we also implement ourselves
the code to compute the homography matrix instead of using
cv2.getPrespectiveTransform.

The results after applying RANSAC on the train/test/custom
set images are presented from figure 37 to figure 45.



Fig. 37. RANSAC results on Train/Set1 images.

Fig. 38. RANSAC results on Train/Set2 images.

Fig. 39. RANSAC results on Train/Set3 images.



Fig. 40. RANSAC results on Test/Set1 images.

Fig. 41. RANSAC results on Test/Set2 images.



Fig. 42. RANSAC results on Test/Set3 images.

Fig. 43. RANSAC results on Test/Set4 images.

Fig. 45. RANSAC results on CustomSet2 images.

Fig. 44. RANSAC results on CustomSet1 images.

F. Warping and blending

Now that we have computed the homography matrix to per-
form the perspective transform between all pair of consecutive
images, we go forward to warp and blend them together.

Suppose Hi,i+1 is the homography matrix to warp image
i into image i + 1. Then in order to find the homography



matrix to warp image i into image k (i < k), we compute it
as follows:

Hi,k =

k−1∏
j=i

Hj,j+1. (1)

To find the homography matrix to warp in the reverse
direction, we simply invert the computed homography matrix.
That is Hi+1,i = H−1

i,i+1.

With the equation above, we easily find the matrix to warp
all images into the anchor image (recap: the anchor image is
the one with index bN/2c).

However, there are 2 issues with our algorithm:

1) Numerical issue: when the number of images is large
(e.g. N > 10), we will have to multiply a lot of ho-
mography matrices together, which would easily result
in numerical issues (float64 datatype in Python is unable
to represent very small or very large float number).

2) Homography matrix does not exist: in some cases,
2 consecutive images do not share a lot of corre-
spondences, which makes us unable to find a reliable
homography matrix between them. Because we assume
that the input images come in sequence (e.g. from left
to right, or from right to left, or from top to bottom,
etc.), if we have to drop one image because not having
enough correspondences, we will also have to drop all
previous images.
For example, we have N = 10 images, and image 3 and
4 do not share enough correspondences. In this case,
we have to drop image 3 and also image 2 and image
1 (breaking the chain from 1 → 10 into 1 → 3 and
4→ 10 and only keep the latter).

We don’t have enough time to try any fancy blending
algorithms. Ours is just a simple approach: blending by placing
each image on top of each other (there’s no average operation
or image compositing).

The results of warping and blending of all images in the
train/test/custom set are presented from figure. 46 to figure. 54.
For Train/Set3, we have to drop image 1.jpg due to the
homography matrix between image 1 and 2 is not reliable
(create extremely bad distortion). Also the images from test set
2, the matching between images 3 and 4 is not found exactly
due to the symmetry of the environment. In the Test Set 4, it
was successful in neglecting the last two images to get a neat
panorama.

Fig. 46. Warping and blending result on Train/Set1 images.

Fig. 47. Warping and blending result on Train/Set2 images.

Fig. 48. Warping and blending result on Train/Set3 images.



Fig. 49. Warping and blending result on Test/Set1 images.

Fig. 50. Warping and blending result on Test/Set2 images.

Fig. 51. Warping and blending result on Test/Set3 images.

Fig. 52. Warping and blending result on Test/Set4 images.

Fig. 53. Warping and blending result on CustomSet1 images.



Fig. 54. Warping and blending result on CustomSet2 images.

II. PHASE 2: DEEP LEARNING APPROACH

In this section, we present our implemented deep learning
approach to perform homography estimation and stitch im-
ages. Here we train our network both in a supervised and
unsupervised way.

A. Data Generation

We follow the instruction on the web page and from [1]
to generate synthetic data to train our model. We resize the
input image to 320× 240, convert it to grayscale, choose the
same image patch size (128×128), and amount of perturbation
(ρ = 32) as in [1]. We show examples of our synthetic data
in figure 55.

We employ 2 approaches to feed data into our training
procedure as follows:

1) Static dataset: For each image in the train/val dataset,
we randomly generate 10 synthetic train/val instances
and save them to local files. Each instance consists of
an image pair (patch A, patch B) and the H4Pt values.
Since there are 5000 images in the train set and 1000
images in the validation set, our generated dataset has
50000 examples for training and 10000 examples for
validation. In our training procedure, we only need to
read from these saved files and feed them into our
network.

2) Dynamically generated dataset: Create a static dataset
as above might potentitally lead to our network overfit
to the static dataset. Therefore, our second approach
is to generate new synthetic data along the way while
training. With this, our network is likely to receive new
input examples at all time, which would prevent it from
overfitting. This is very similar to data augmentation.

B. Network Architecture

We use the same network architecture for both our super-
vised and unsupvervised model. The architecture is shown in
figure 56. Our architecture is a shallower version of the one
presented in [1]. Input to the network is the pair of patch A
and patch B, and the output is the 4-point homography H4Pt.

Fig. 55. Example of our synthetic data: (left) original image with patch A
and its corner perturbations (middle) patch A (right) patch B.

Fig. 56. (Left) Our network architecture (Right) Explanation of a block conv
layer: it consists of the 3 × 3 convolutional layer followed by a batch
normalization and ReLU layer.

C. Supervised Model

We use Adam optimizer with learning rate 1e−4 and batch
size 64 to train the network. For the supervised model trained
on the static dataset, as it experiences overfitting easily, we add
a dropout layer with probability 0.5 after the FC-1024 layer.
For the supervised model trained on dynamically generated
data, it hardly achieves overfitting. We also notice that scaling
image values into the range [0, 1] (by dividing image pixel
value by 255), and the H4Pt values into the range [−1, 1] (by
dividing corner perturbation by 32) help the network converge
better.

We present a plot of the training vs. validation loss in
figure 57. Here, the loss is the mean squared error between
the groundtruth and the predicted H4Pt values after we have
scaled them into the range [−1, 1]. Therefore, to scale them
back into pixel value, we must apply the following formula:
let x be the MSE loss, the MSE loss on the pixel scale is
32
√
x.



Fig. 57. Plot of train loss (red) vs. validation loss (blue) of our supervised
model trained on (left) static dataset (right) dynamically generated data.

Fig. 58. Plot of train (red) vs. validation (blue) loss of our unsupervised
model on the static dataset. (Left) Photometric loss (Right) H4Pt loss.

Due to limitations in time and computing resources, we
could not train our model any further even though the loss
value is still gradually decreasing. We will later present our
supervised model performance in the last subsection.

D. Unsupervised Model

We also use Adam optimizer with learning rate 1e− 4 and
batch size 64 to train our unsupervised model. Here, we only
train the model on the static dataset due to time limitation. We
also scale image pixel value into [0, 1] but we did not scale
the H4Pt values.

We present a plot of the training vs. validation photometric
loss and H4Pt loss in figure 58. Notice that our model only
learns to minimize the photometric loss. We only show the
H4Pt loss here to demonstrate the capability of the model
to estimate homography during training. We will present our
unsupervised model performance in the next subsection.

E. Performance on Train/Val/Test set

We present the performance in terms of mean corner pixel
error of our models on the train, validation, and secret test set
in table I. The way we calculate the mean corner error is the
same as in [1]. In the table, Static means the model has been
trained on our statically created dataset, and Dynamic means
the model has been trained using dynamically generated data
(as explained in section II.A).

We also record the forward pass run-time of our network
architecture to be around 0.0024 second on the GeFore GTX
1080 Ti GPU.

From the performance table, we can see that our models
generalize really well on the test set. The mean corner error
on the train and test set are not too much different. Moreover,
judging from the training loss plots in figure 57 and 58
there’s still a lot of room for improvement. However, as we

Model name Train EPE Val EPE Test EPE
Supervised + Static 10.55px 10.58px 10.54px
Supervised + Dynamic 12.64px 12.63px 12.64px
Unsupervised + Static 10.12px 11.09px 10.95px

TABLE I
AVERAGE EPE RESULTS OF OUR MODELS ON THE

TRAIN/VALIDATION/TEST SET.)

mentioned in the last subsections, due to limitation in time
and computation resources, we could not continue to train our
models further. The reason that our Supervised + Dynamic
model performs worse than the others is that we have trained
it for only around 6000 iterations (you can see the number of
training iterations in figure 57), whereas we train Supervised
+ Static for more than 30000 iterations. We believe that
Supervised + Dynamic will perform better than Supervised
+ Static if we train it more.

F. Comparision between Classical and Deep Learning Method
for Homography Estimation

In this section, we show some examples to compare between
traditional and deep learning method for estimating homogra-
phy between 2 images.

For deep learning method, in order to estimate the homog-
raphy between 2 images A and B, we will do as follows:

1) Resize A and B to (320, 240) and convert them to
grayscale.

2) Obtain 5 random crops of size (128, 128) in A, and
obtain 5 random crops at those same locations of size
(128, 128) in B (always make sure that in those 5 crops,
there is a crop at the center of the image since this crop
is likely to give more accurate estimates).

3) For each pair of random crops at the same location, for-
ward them through our supervised/unsupervised model
to get the homography. The final homography is the
average between all computed homography matrices.

Examples to compare between traditional and deep learning
method are shown in figure 59.

Even though we have very great results with the deep
learning model shown in figure 59, our proposed method above
to estimate the homography between 2 arbitrary images are
not good. Our proposed method is only good with synthetic
data when the 2 input patches share visual similarities. On the
other hand, given 2 arbitrary images, it is difficult to select two
patches with similar visual appearance to input to the network.
We have tried generating random crops across the whole two
images. This is also the reason we are unable to produce
panoramas using supervised and unsupervised approach.

REFERENCES

[1] D. DeTone, T. Malisiewicz, and A. Rabinovich, Deep Image Homography
Estimation.

[2] T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, V. Kumar, Unsu-
pervised Deep Homography: A Fast and Robust Homography Estimation
Model.



Fig. 59. Traditional vs Deep Learning Homography Estimation Method. Blue is the groundtruth box and green is our transformed box in the warped image
using the estimated homography. Left column shows the results of using traditional method. Right column, in the center shows the results of the supervised
model. Right column, on the right shows the results of using the unsupervised model. Row 1: traditional method fails due to the detected keypoints lie too
close and are almost colinear, while deep learning method achieves very good results. Row 2: traditional method produces an almost perfect result, whereas
deep learning shows acceptable prediction. Row 3: traditional and deep learning method produce similar results on this example. Row 4: traditional method
again fails due to the detected keypoints are too close and almost colinear, whereas deep learning method does not have this problem.


