Project 1: Auto Pano

Abhinav Modi
Masters of Engineering in Robotics

Kartik Madhira
Masters of Engineering in Robotics

Prateek Arora
Masters of Engineering in Robotics

University of Maryland, College Park University of Maryland, College Park University of Maryland, College Park

Email: abhi1625@umd.edu

I. INTRODUCTION

Homography between 2 image frames is one of the
most significant concept in Computer Vision. It holds many
applications in the fields of Image Processing and Robotics.
It is defined as the transformation between two planes of
interest. In this project we use Homography to warp multiple
images and stitch a panorama using three different techniques-
Traditional approach using feature matching and RANSAC,
Supervised approach to predict a 4 point parametrization
of Homography between two images and an Unsupervised
approach to predict Homography without the presence of
a ground truth. These approaches have been briefed in the
sections that follow.

II. PHASE 1: PANORAMA STITCHING USING
TRADITIONAL APPROACH

The Traditional approach can be separated into 5 steps.
Sequentially, these are corner/feature detection, Adaptive
Non-maximal Suppression(ANMS), Feature Description and
Matching, RANSAC for outlier rejection to estimate robust
Homography, and finally blending the images. The underlying
assumption in creating a panorama by this approach is that
there is about 60-70% overlap in the two consecutive images.
We demonstrate this algorithm using the two images from a
Custom Set created from an image of Yosemite mountains,
shown in figure(62):

Figure 1: Two sequential images from left to right for creating
the panorama

A. Corner/ Feature Detection

The first step in stitching a panorama is detecting features
in an image. We detect the Shi-Tomasi features in the image
using cv2.goodFeaturesToTrack(). We can also use Harris
corners as the required features but Shi-Tomasi gives us more

Email: kmadhira@terpmail.umd.edu

Email: pratique @terpmail.umd.edu

of the good quality features to work with. The output of corner
detection for above two images can be seen in the figure(2).

¥ [, " TR

Figure 2: Two sequential images from left to right for creating
the panorama

B. Adaptive Non Maximal Suppression(ANMS)

In this step we find the Npes; corners in the image. This
done because in a real image, a corner is never perfectly sharp
and it might get a lot of hits in the previous step. The steps
involved in ANMS are as follows:

Input : Comer score Iinage [y, obtained using cornermetric). Ny (Number of
best corners needed)
* Niea

Output: (zy,) fori=1:

Find all local maxima using inregionalmax on (g

Find {x, y) co-ordinates of all local maxima;

({2, ¥} for a local maxima ave inverted row and column indices e, IT we have local
maxima af [i,] then x = j and y =i for that local maxima);

Initialize ry = 0o for i = [1 1 Nypng)

for i = [1 : Nurang| do

for j =[1: Nyrong| do

|3 ({Cinsltti- i) = Cimglyi.a)) then
| ED = (z, -)+ o
end
if £D < r; then
| s =ED

| end

end

end

(v —w)

Figure 3: ANMS algorithm

The final list is then sorted in descending order and Np.s;
corners are selected. The output after ANMS is shown in
figure(4)

C. Feature Description and Feature Matching

In this part, we describe each feature point by a feature
vector. We first take a 40 x 40 patch around the keypoint.
Then we apply a gaussian blur on the patch and down sample
blurred patch to a 8 x 8 matrix. Then we reshape the matrix
to a column vector and standardize it to remove bias and

Figure 4: Showing Corners detected in the two images

illumination effect. The first four feature descriptors in the
list obtained from ANMS for the first image can be seen in
the figure(5)

- B H B
Figure 5: 4 Feature vectors and their corresponding 8 x 8
patches from left to right

The rest of the feature descriptors and 8 x 8 patches are not
shown in the report as they are very large in number. But they
have been stored in their corresponding Set folder in the zip
file submitted. Path: ’./Phasel/Code/Results/*’

Once each keypoint is encoded by a 64 x 1 vector in
every image, we compute match pairs in two different images
of interest by calculating the sum-squared distance of each
feature vector in the first image to each such vector in the
second image and save them in sorted lists. A threshold of
0.5 is set on the ratio of lowest and second to lowest SSD
for each feature point in the first image to determine if the
matched pair should be saved. If this ratio is less than 0.5
then the pair is rejected and rest of the pairs are saved. Note,
we also set a flag which returns an error in case there are
less than 45 matches between 2 images, because these images
cannot be stitched. This number is chosen arbitrarily, feel free
to play around with it.

Figure 6: Output of Feature Matching

D. Random Sample Consensus: RANSAC

The feature matching output also contains some incorrect
pairs which should be removed to obtain a more accurate
Homography. RANSAC provides us a method to do that.
The input of RANSAC are the coordinates of matched pairs
obtained in the previous step, desired number of robust pairs
(we used a 90% probability of inliers), a threshold = 30 rep-
resenting the sum-squared distance between estimated feature
location and actual feature location, and the maximum number
of iterations N max = 3000. We follow the steps: randomly
selecting 4 feature pairs, computing exact the Homography
matrix H, computing the SSD between estimated points after
transformation and actual points in image 2. This algorithm
is repeated for N,,,, times to find the largest set of inliers.
Now, the final Homography to be applied is calculated from
this set of inliers. The output obtained from the RANSAC is
shown in the

Figure 7: Output after RANSAC

E. Stitching and Blending

After obtaining homography between the images, we per-
form warping and stitching. The stitching is performed in a
sequential manner i.e., the images are selected in order from
left to right and/or top to bottom. This is done in the following
way:

« Compute homography between N — 1 and N** image.

Here N = 2,3..

o Apply this homography to the 4 corner points of the
N — 1' image and obtain the minimum X and Y
translation of the image. Then, remove this offset from
the homography matrix such that top-left corner of the
N — 1*" image is (0,0) and warp the N — 1 image using
this new homography matrix.

o A bigger frame is then constructed, which will contain
the stitched images for the panorama, by adding the sizes
of the warped(N —1) image and the N*" image and place
these images in this frame.

« Use the pano image created in the previous step and the
N + 1" image to the repeat the steps 1-3 and voila! you
have a panorama.

Once the final panorama image is obtained, a final Gaussian
filter of size (5,5) is applied to the image and thus .The output
panoramas for the images given in the Train Sets are shown
in figures(8),(9),(65). A Custom set was also created using the
images from the Yosemite mountains(12).

Figure 8: Panorama for images from Train Setl

Figure 10: Panorama for images from Train Set3

FE. Discussion and Conclusion

In this section we created a panorama using a traditional
approach by matching features between two images. This
approach gives satisfactory results which can still be improved
using additional techniques like blending or averaging the
pixel values of the two images at the same location while

Figure 11: Panorama for images from Custom Setl

Figure 12: Panorama for the images form Test Set 1

stitching. Also, the algorithm produces better results when
all the image planes are at infinity. As seen in some cases
the estimated homography is not very accurate. This happens
because the both image planes are not at the same depth. In
such cases better results can be produced by projecting these
images on a cylinder and then performing the stitching.

The stitching algorithm fails for a cyclic order of images as
can be seen in the figure(12). Thus, a more robust algorithm for
stitching the images is required. Still, the algorithm is robust
for cases when there are less than a required set of matched
pairs. For this project we have kept this number 45. This is
an arbitrary choice and works well for most of the cases.
This can be seen for the Test Set 4. The figure(??) shows
the number of matches obtained after feature matching. If we
apply RANSAC to this case it leaves us with 4 matched pairs
which are corresponding pairs of the random points chosen
while computing the initial homography during RANSAC.
This shows that there is no/very little overlap present between
the two images. Thus the algorithm is robust enough to
handle such cases and rejects such images during the stitching
process.

Some of the intermediate results were saved for all the sets
of images available to us. These results are provided in the
Appendix Section in the end of the document.

Figure 14: Panorama for the images form Test Set 2 and Test Set 3

III. PHASE 2:DEEP LEARNING APPROACH

In this method we implement the entire pipeline of
traditional Panorama stitching using deep learning. Deep
learning here is used to compute the homography matrix
between several images. Robust and fast Homography
estimation is required applications, especially in robotics, to
estimate pose between multiple aerial images for collaborative
autonomous exploration and monitoring. Both supervised and
unsupervised approach have been implemented to compute
the homography. The empirical results presented in the paper
demonstrate that compared to traditional approaches, the
unsupervised algorithm achieves faster inference speed, while
maintaining comparable or better accuracy and robustness to
illumination variation. Furthermore, the unsupervised method
has superior adaptability and performance compared to the
corresponding supervised deep learning method.

A. Data Generation

In order to train the networks we create synthetic dataset.
For the supervised approach we generate synthetic image data
set with corresponding labels. Here labels are our ground truth
which is only used while training the supervised network.
We generate the synthetic data set from MSCOCO dataset
which contains a lot of objects in natural images. Since the
convolution doesn’t accept image sizes of arbitrary shape we
crop two patches from the same image namely patch A and
patch B. In order to to get a complete patch of dimensions
128x128, the left top corner of a patch can only be placed in
a limited area which is shown in figure 15.

The first patch, patch A is a square patch of the dimension
128x128 as shown in figure 16. Then, in order to create a
different patch(or in a sense image) the corners of the first
patch are perturbed i.e each corner point’s location x;=(x;,y;)
is changed by a small amount in the range [-p,p] where p is
an arbitrarily chosen perturbation. In our case the value of p

Figure 16: Patch A marked in red and Patch B(perturbed)
marked in blue [1]

selected is 16. The second patch, namely Patch B is shown
in figure 16. This perturbation is saved as ground truth for
our supervised model. The perturbed patch is not a perfect
square of dimension 128x128(dimensions accepted by our
network) and thus, to get a perfect square patch, we inverse
warp the original image as shown in figure 17 it using the
homography matrix. This homography matrix is computed
using cv2.getPerspectiveTransform between corner point of
patch A and corner points of patch B(which is equal to sum
of each corner point of patch A and its respective perturbation)

The following data fields have been saved for supervised
approach :

. liatchl and Patch2 stack
o Hypt ground truth

For the Unsupervised part data fields saved are as followed:

o Patchl and Patch2 stack

o Corner points of patch in the first image (C4_A)

o Reference to original image from which the patch was
cropped

Figure 17: Patch A marked in red and Patch B marked in blue

| after the image has been warped image

B. Supervised Approach

In the paper the task of computing homography is formu-
lated as a classification problem and regression problem and
here we have implemented the regression network. The only
difference is that in the classification we discretize the output
into 8 points and 21 bins (8x21 output) while in the regression
one the output is 4 point parameterization of homography .

H4-Pt

Figure 18: Architecture of Supervised HomographyNet [1]

The networks use 3x3 convolutional blocks with Batch
normalization and ReLUs, this is very similar to the VGG
architecture. Both networks take as input a two-channel
gray scale image sized 128x128x2. In other words, the
two input images, which are related by a homography, are
stacked channel-wise and fed into the network. We use 8
convolutional layers with a max pooling layer (2x2, stride
2) after every two convolutions. The 8 convolutional layers
have the following number of filters per layer: 64, 64, 64, 64,
128, 128, 128, 128. The convolutional layers are followed by
two fully connected layers. The first fully connected layer
has 1024 units.The regression network directly produces 8
real-valued numbers as shown in figure 21 and uses the
Euclidean (L2) loss as the final layer during training. [2]

Approximately 40000 images were generated for the train-
ing of the network from train set of 5000 images of the
MSCOCO dataset. Owing to the nature of HomographyNet
infinite number of images can be generated from a finite set
of train images. The perturbation values were set to random
values between -16 and +16.

C. Result-Supervised

In our network we use Adam optimizer as the optimizer
with a learning rate of 0.0001 with a batch size of 128.
For training we initially intended to run for 400 epochs but
owing to plateauing of the loss of the network we stopped the
training at 200 epochs.Also, training the network on 40000
images for 200 epochs took approximately 8 hours.

The final graph obtained with the updated weights takes
an average of 0.69 seconds to produce a 4-point parametrized
output between two images that are related by a homography
matrix. To perform an initial sanity check on the output of
the network we input two equal patches(patchA=patchB). The
resultant warping of the first image should be same image
as the first image itself and is also what we get from the
network(See fig. 16).

For getting the homography matrix between the images
from the 4-point output of the network we take the corner
locations of the original image and then add the 4-point output
to this to get the corner locations in the second image. Now
that we have corresponding corner locations in the images
respectively, we calculate the homography between them.
Outputs for train, validation and test datasets can be seen in
figs. 21, 22 and 23 respectively.

237
50 4
154
100

125

254
50

5

100
125

a
1]
<
=
=
a

Figure 19: Two equal patches being input into the network for
sanity check

1) Train set Homography Accuracy:
2) Validation set Homography Accuracy:
3) Test set Homography Accuracy:

D. Unsupervised Approach

While the supervised deep learning method has promising
results, it is limited in real world applications since it requires

50

p—

106 4

Figure 20: Output of the sanity check warped image with near
Zero error

Regression HomographyNet

Conv7 Conva

FC

16x16x128

16x16x128 1024

1 2
Loss: Euclidean (L2) 5 llp(x) — a(@)II"

Figure 21: Regression HomographyNet

LossEenyte

Figure 22: Loss per Iteration

ground truth labels. Unsupervised approach, on the other hand,
achieves faster inference speed, while maintaining comparable
or better accuracy and robustness to illumination variation. In
addition, the unsupervised method has superior adaptability
and performance compared to the corresponding supervised
deep learning method.

The architecture of the Unsupervised network is shown in
figure 28. First part of the Unsupervised network is exactly the
same as supervised network which is followed by TensorDLT
and Spatial Transformation Layer. The main contribution of
the paper is the part after getting Hype, i.e. TensorDLT and
Spatial tranformer, which are both differentiable functions.

comvad 7 |

Figure 23: HomographyNet architecture

Figure 24: From left to right (a) Loss per epoch (b) Validation
loss per epoch

1) TensorDLT: TensorDIt converts the I:I4pt to a 3x3
homography matrix. The main contribution of the paper is

Tl

Figure 25: Image overlayed with homography estimated by
deep learning model shown in red and ground truth shown in
blue on Train set

Figure 26: Image overlayed with homography estimated by
deep learning model shown in red and ground truth shown in
blue on Validation set

to make this function differntiable. A function is similar
to opencv function getPerspectiveTransform() but is differ-
entiable. To convert 4 point parameteﬂzation,ﬁ4pt, to 3x3
matrix the problem is formulated Ax = b and we solve
the system of linear equations. Corner points of first patch
i.e. patch A, are needed to form the system of equation
which are fed directly into TensorDLT layer. After we get the
homography matrix, we warp the original image (Ia) using
3x3 homography matrix. A matrix is defined as follows:

1),-1)2‘

' ey

—U;V;

A - o 0 0 —u -—-v;, -1 v;yi
! U; Vg 1 0 0 0

—U;U;

where u;,v; are corner points of patch A and u;,v; are corner
points of patch B.

Figure 27: Image overlayed with homography estimated by
deep learning model shown in red and ground truth shown in
blue on Test set

B martix is defined as
@& ’ ’ T
b= [0,

2

2) Spatial Transformation Layer: This layer applies the 3x3
homography estimate output by the Tensor DLT to the pixel
coordinates x; of image I_A in order to get warped coordinates
H(z;). These warped coordinates are necessary in computing
the photometric loss function in Eqn. 3 that will train the
neural network. In addition to warping the coordinates, this
layer must also be differentiable so that the error gradients
can flow through via backpropagation. This layer has three
components (1) Normalized inverse computation inverse of
the homography estimate; (2) Parameterized Sampling Grid
Generator (PSGG); and (3) Differentiable Sampling (DS).
Spatial Tranformation layer is similar in working to opencv
function warpPerspective(). This warped image is used to cal-
culate the photometric loss defined in the following section.;

3) Photometric Loss function: Drawing inspiration from
traditional direct methods for homography estimation, an
analogous loss function is defined. For an image pair I (x;)
and I”(x;) we want the network to estimate the 4 point
parametrization of the homography Hyp¢. This loss minimizes
the average L1 pixel-wise photometric loss. This loss is given
by the function :

Lpw =

! S I (H(xi) — 1P 3)

Here #(x;) is obtained from the Hype which is estimated
by the Supervised Network in the previous section. For better
results L; error is chosen instead of Lo error because it
has been observed to be more suitable for image alignment
problems [4].

E. Result-UnSupervised
The results can be seen in the figures(29) and (30)

F. Conclusion and Discussion: Phase 2

Although the supervised approach performs well in both
validation and test set, some results in supervised section
suffered from minor error due to changes in illumination of
the patches. Also when the test was performed on patches
that were perturbed more than the perturbation range on
which the network was trained on, the error in ground truth
and predicted homography was large(which is quite obvious).

For the unsupervised approach we were able to implement
both the TensorDLT and Spatial Transformer Layer, but even
running the code for more than 50 epochs didn’t provide good
results. In order to augment our understanding of Unsupervised
process we referenced the code provided officially by the
authors of the paper and generated results to observe the
differences between ground truth and the patch warped with
the homography estimated by the unsupervised model.

REFERENCES

[1] Cmsc733 computer vision.
https://cmsc733.github.i0/2019/proj/p1/ph2.

[2] Daniel DeTone, Tomasz Malisiewicz, and Andrew Ra-
binovich. Deep image homography estimation. arXiv
preprint arXiv:1606.03798, 2016.

[3] Ty Nguyen, Steven W Chen, Shreyas S Shivakumar,
Camillo Jose Taylor, and Vijay Kumar. Unsupervised deep
homography: A fast and robust homography estimation
model. IEEE Robotics and Automation Letters, 3(3):2346—
2353, 2018.

[4] Turi Frosio Hang Zhao, Orazio Gallo and Jan Kautz. Loss
functions for neural networks for image processing. CoRR,
abs/1511.08861, 2015.

Loss

» HaxW P X
Input s X _]
Eac.'cpmpﬂgaﬂon Haypaint Faature ¥
i i2Ax12Bx2 l : ‘ Detector || Descripior [\ |
P-’k PB . ; I i . i I& freraneees o ey — — ‘
' Flagrenion A | e assmesssememssns Matching| " [Homagraphy| |
i | H] HxW 4 ‘
......... A |
8xi e ! ‘ Ly G Dok [Do . ~H
H, [— : A Gl s =
(a) Supervised Approach : (b) Generic Feature-based Approach
Loss 1
Input l Backpropagation | . |
128 128x2 - m Spatial Transformation S
P a T i i ' Phosararks
E.X i 1-14],' ﬁ et e ﬁB pr
HxWw

~ (c) Unsupervised Approach

Figure 28: Overview of homography estimation methods; (a) supervised deep learning approach; (b) Feature-based methods;

and (c) unsupervised method [3]

Figure 29: Image overlayed with homography estimated by
deep learning model shown in red and ground truth shown in
blue on Test set

Figure 30: from left to right (a) Loss per iteration on Train
set (b) Loss per iteration on Validation set

IV. APPENDIX B. Set 2

The intermediate results for all the processes- corner de-
tection, ANMS, feature matching, RANSAC and stitching are r |

shown for two arbitrarily selected images of each Train and
Test Set for reference purposes.

A. Set 1

Figure 36: Output of Corner Detection

|

Figure 37: Output of ANMS

p— |

Figure 38: Output of Feature Matching

C. Set 3
D. Set 4
E. Set 5
F. Set 6
G. Set7

Figure 35: Warping and stitching done for the two images

Figure 39: Output after RANSAC
Figure 42: Output of ANMS

Figure 43: Output of Feature Matching

Figure 40: Warping and stitching done for the two images

Figure 44: Output after RANSAC
Figure 41: Output of Corner Detection

Figure 47: Output of ANMS

Figure 45: Warping and stitching done for the two images

Figure 48: Output of Feature Matching
Figure 46: Output of Corner Detection

Figure 49: Output after RANSAC

Figure 51: Output of Corner Detection

Figure 52: Output of ANMS

Figure 50: Warping and stitching done for the two images

Figure 53: Output of Feature Matching

Figure 55: Warping and stitching done for the two images

Figure 54: Output after RANSAC

Figure 56: Output of Corner Detection

- =

Figure 59: Output after RANSAC

Figure 57: Output of ANMS

Figure 58: Output of Feature Matching

Figure 60: Warping and stitching done for the two images

Figure 64: Output after RANSAC

Figure 65: Warping and stitching done for the two images

Figure 63: Output of Feature Matching

