Project 1: MyAutoPano

(Using 1 Late Day.)

Rohitkrishna Nambiar (115507944)
University of Maryland
College Park, Maryland 20740
rohit517@umd.edu

Abstract—The estimation of homography between a pair of
images is a problem of interest in the field of computer vision.
The purpose of this project is to generate a seamless panorama
by stitching two or more images. Both the traditional and deep
learning approaches are studied and implemented in this project.
The concepts of corner detection, feature descriptors, and feature
matching, warping and blending are exploited in the traditional
approach whereas all these are combined in the deep learning
approach.

I. INTRODUCTION

We begin with the traditional approach for creating a
panorama and then later cover supervised and unsupervised
methods for homography estimation. Section 2 covers the
traditional approach and section 3 covers the Deep learning
approach. Section 4 covers experiments and results are covered
in section 5. The output for additional test sets and training
sets are added towards the end.

II. PHASE 1: TRADITIONAL APPROACH

The traditional approach to panorama stitching can be
summarized into seven steps as shown in Fig. 1. Each of these
steps are explained in detail in the following sections. We will
be using Set 1 for explaining the algorithm.
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Fig. 1. Pb-lite Algorithm

A. Corner Detection

The first step towards stitching a panorama is to understand
how the two images are related geometrically. To do this, we
first extract feature points that can be tracked from one image
to other. We use corners as feature points and show that these
are tracked well across images. Harris corner detector [1]
and Shi-Tomasi corners [2] were both tested with the latter
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Fig. 2. (a) Input Image (b) Shi-Tomasi corners.

one used for final implementation. The input image and the
corresponding corners detected by using Shi-Tomasi corner
detector is shown in Fig 2.

B. Adaptive Non-Maximal Suppression (ANMS)

From Fig. 2 we observe that without providing any addi-
tional parameters to the corner detector, all the corner points
are clustered and spaced very close to each other. This can
also happen as in an image there can be many strong corner
points very close to each other. In these scenario, we want a
single strong corner point. We use AMNS to make sure all our
corner points are equally spaced so that no undesired artifacts
are generated during image warping. For our implementation,
we pass additional parameters to Shi-Tomasi corner detectors
that specify the number, strength and distance between feature
points which acts relatively close to ANMS. The output after
ANMS / parameterized Shi-Tomasi detector is shown in Fig.
3. We see that the corners are evenly spaced out.

(®)
Fig. 3. ANMS output for different images.



C. Feature Descriptor

Once we identify the best features that can be tracked from
one image to other, we need to compute a value/descriptor for
it such that it can be matched with corresponding feature on
the other image. In our implementation to compute the feature
descriptor, we first select a 40 x 40 window around the feature
point. Gaussian blur is applied to smooth the patch and remove
any noise. The patch is resized to 8 x 8 and then flattened
to obtain a 64 valued feature vector. We also normalize the
feature vector which provides some illumination in-variance.
We also tested other feature descriptors such as ORB [3] and
SIFT [4] for comparison.

D. Feature Matching

Once we obtain the feature vectors for the two images that
we want to stitch, we now have to match them. To compute
the feature matches, we compare each feature vector in one
image to feature vectors in the other image using the Sum of
Squared (SSD) distances metric. To reduce the number of false
matches among feature vectors we use the ratio test which is
nothing but the ratio of the value of strongest match to the
value of second strongest feature match.

(b)
Fig. 4. Feature Matching output. (a) ratio = 0.8 (b) ratio = 0.2

In Fig. 4 we see the output of the feature matching algorithm
where we change the value of the ratio in the ratio matching
test. Here, as we lower the value of the ratio, the matches get
better (reduced outliers). Thus the optimum value is a trade-off
between the quality and number of matches.

E. RANSAC for robust estimation
To remove outliers and estimate homography robustly, we
use RANSAC which stands for RANdom SAmple Consensus.
The algorithms is as follows:
1) Select four feature points randomly p; from image 1 and
p; from image 2.
2) Compute the homography H between p; and p;.

3) Using all the other matches we compute the inlier where
SSD(p;, Hp; < 7), where 7 is the threshold for inlier
matching.

4) Repeat steps 4-6 until all iterations have been completed
or we get inliers higher than set value (ex. 90%).

5) Keep largest set of inliers.

6) Re-compute least square estimate H " based on highest
inlier points.

The output of the RANSAC algorithm can be seen in Fig.

Fig. 5. RANSAC estimation and outlier rejection

F. Blending Images

Once we get the homography between the two images,
we warp image 1 with respect to image 2 and blend them.
For blending, we have simply used the averaging technique.
Further, warping from the left helps to append images in a
series and not have undesirable artifacts. Other approaches
such as warping from the center to either sides can also be
successful in stitching panorama with large number of images.
We also assume that the images are in sequence. To automate
this, we can compare features among all the images to estimate
the sequence.

Fig. 6. Stitching with 2 images and average blending

Fig. 7 shows the input image sequence to the algorithm. Fig.
8 shows the output panorama image. Other images in Train
set and Test set are added in the appendix.

III. PHASE 2: DEEP LEARNING APPROACH

In the traditional approach mentioned in Phase 1, which
followed a pipeline of combining the process of corner detec-
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Fig. 7. Input Images

Fig. 8. Image panorama with 3 images

tion, Adaptive Non Maximal Suppression, feature extraction,
feature matching and robust estimation of homography using
RANSAC. The deep learning approach to solve this problem
combines all the above mentioned steps of the traditional
approach to estimate the homography between two images.
It can be observed that this approach is a faster one and also
robust if the network is generalizable. Below described are
the implementation details and specifics of this deep learning
approach which were described in the paper [5].

A. Data Generation

To train any convolutional neural network we need data
and for homography estimation using deep learning, we need
to generate data. Each data point for our model consists of a
pair of images and the value of homography between them.
For this, we generate images that are synthetic parirs. To ensre
that the network is not biased we use the images from the
MSCOCO dataset which is a set of large number of images.

For image data generation, we need the two images to be
of the same size. The following are the steps in the data
generation phase:

1) Crop a random patch P4 of size 128 x 128 where the
image has both the row and column dimensions greater
than or equal to 128. This is to ensure that all pixels in
the patch lies within the image after performing warping
operation on the extracted patch. The original image I4
is shown in 9 and the cropped patch P4 is shown in 10.

Fig. 10. Corners for patch P4 in blue.

2) Now we have patch P4 with four known corners. We
need to perturb these four corners by a value in the range
[—p, p]. In our case, the value of p is 32. The four new
corners give us a closed patch. The perturbed corners of
Py is in green as shown in figure 11.

3) Now warp the original image I, with the inverse of
the transformation matrix between the corners in patch
P4 and the perturbed corners from P4 to get image /p.
Cropped Patch P4 is shown in figure ??2.

4) Crop image Ip with the corners to be the same as those
were in P4 to get patch Pp. Cropped Patch Pp is shown
in figure 12. Another example of patches is shown in 13

After following the above steps, we have two images and
the corresponding homography between them. We do not
compute the homography for the label but the difference in
the coordinates of the corners in P4 and Pg which is Hyp;.
Now we stack these two image patches to get an input of size
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Fig. 12. (a) Patch P4 (b) Patch Pp.

128 x 128 x 2K where K is the number of channels in each
patch.

B. Supervised Learning Approach

The overview of the deep learning based method is shown
in figure 14. Given two images, the HomographyNet gives the
output of Hyp; from which the homography can be extracted
using DLT.

(b)

Fig. 13. (a) Patch P4 (b) Patch Pp.
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Fig. 14. Overview of HomographyNet.

The architecture of the HomographyNet has 8 convolutional
layers of kernel size 64, 64, 64, 64, 128, 128, 128, 128 with
batch normalization and ReLU activation after each convo-
lution layer, two fully connected layers with 8 real valued
numbers as output. Dropouts with probability 0.5 are applied
after the final convolutional layer and the first fully connected
layer. The architecture of the HomographyNet can be seen
in figure 16 and each convolutional block has a structure as
shown in

Fig. 15. Architecture of HomographyNet.

ConvolutionalBlockd

Fig. 16. Convolutional block in HomographyNet.

The loss function used is the Euclidean (L2) loss and the
optimizer is ADAM with learning rate of le-4. The graph
statistics of the network as given in TensorBoard can be
visualized in Fig 17. The loss per iteration and loss per epoch
in the training phase as well as validation loss are shown in
figure 18.

The histrogram plot of the predicted Hyp; by the network
can be seen in Fig 19 and 20 and distribution plot in Fig. 21.

IV. EXPERIMENTS

A. Traditional Approach for Homography

The arguments for cv2.goodFeaturesToTrack was 700 maxi-
mum corners and 0.01 as quality level. The ratio between first
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Fig. 17. TensorBoard graph of HomographyNet.
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Fig. 18. TensorBoard training loss plot of HomographyNet per iteration.

best and second best matches in feature descriptor was set to
0.5 i.e. if the ratio is less than 0.5, then the feature pair is
accepted. RANSAC was run for 1000 iteration or 90 percent



autput_weights L] V. RESULTS
A. Traditional Approach for Panorama Stitching

The results for the images 22 in Test Set 3 is shown in
figure 23. Results for other test sets and train sets for Phase 1
are added in the Appendix A.

Fig. 19. TensorBoard histogram plot of HomographyNet output.
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Fig. 22. Input Images Test Set 3

Fig. 20. TensorBoard histogram plot overlay of HomographyNet output.
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00 Fig. 23. Test Set 3 Panorama Output

B. Supervised Learning: HomographyNet
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The results from HomographyNet are shown in figure 24,

25,26 and 27. As mentioned in the images, the green bounding

Fig. 21. TensorBoard histogram distribution of HomographyNet output. box has the perturbed corners as its vertices which is the
ground truth. The values predicted by the HomographyNet

form the vertices of the red bounding box. Other images tested

of all matches were in inliers, whichever occurred first. The ©n the Homogra.lpl.lyNet are shown in the Appendix A. Table
SSD value of less than 0.5 indicated a the presence of an inlier I shows the statistics for the network.

for that particular estimate of a homography. I Data Num Tmages LT Loss L2 Loss Fwd Pass Runtime ||
Train Set 5000 29.918 211.204 3.145ms (average)
Validation Set 1000 29.409 200.915 3.96ms (average)
B. Supervised Learning: HomographyNet Test Set 1000 29.801  211.509  3.942ms (average)
) ) ) ) TABLE [
The network mentioned in section III-B was trained for 800 HOMOGRAPHYNET STATISTICS

epochs with a minibatch size of 64 on a GTX1060 GPU.



Table I shows the L1 loss, L2 loss, number of Images, and
the runtime for the forward pass operation for each Train,
Validation and Test set. The L1 and L2 loss are in pixels (can
be rounded off to nearest integers).

Fig. 25. Results from test set for HomographyNet

VI. CONCLUSION

We have implemented the traditional approach to panorama
stitching as well as used deep learning methods to estimate
homography. From our results we see that although traditional
approach works well, the number of steps and parameters
required to tweak are more. Deep Learning approach takes
that away as we invest the time to train the network once.
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Fig. 26. Results from test set for HomographyNet

Fig. 27. Results from test set for HomographyNet
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APPENDIX A
TRADITIONAL METHOD OUTPUTS

The following image are outputs for the test and train sets
for Panorama stitching using the traditional method.

A. Train Set 2

Train set two images are shown in Fig 28. The output
panorama is shown in Fig 29.

(b)
Fig. 28. Input Images Train Set 2

(e)

Fig. 30. Input Images Train Set 3

Fig. 29. Train Set 2 Panorama Output

B. Train Set 3 h,_._,ﬂ_—__\-; 1 =

In this set, as the planar assumption fails, the image fails to
stitch. Thus we have only created the panorama for 3 images
(c), (d) and (e) from Fig 30. The output panorama can be seen
in Fig 31.

C. Test Set 2

In this set, as the planar assumption fails, the image fails to
stitch. Thus we have created two sets of panoramas as shown
in Fig 33 and 34.

Fig. 31. Train Set 3 Panorama Output
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Fig. 32. Input Images Train Set 2

D. Test Set 1 and Test Set 4

Test Set 1 fails to work as the checkerboard images cannot
be matched accurately. This maybe caused as all the corners
might have the same scores. For Test Set 4, the images are
same as Test Set 2.

E. HomographyNet Results

Here we additionally tested 4 images on our supervised
network. As mentioned in the images, the green bounding box
has the perturbed corners as its vertices which is the ground
truth. The values predicted by the HomographyNet form the
vertices of the red bounding box.

Fig. 33. Test Set 2 Panorama Output 1

Fig. 34. Test Set 2 Panorama Output 2

Fig. 35. Results from test set for HomographyNet



Fig. 37. Results from test set for HomographyNet

Fig. 38. Results from test set for HomographyNet



