
Project 2 - FaceSwap Submission
Abhishek Kathpal

CMSC733
UID:114852373

Email: akathpal@umd.edu
USING 2 LATE DAYS

Abstract—This project is focused on implementation of Face
Swapping algorithm using both traditional and deep learning
approach. The pipeline for the algorithm consists of detection of
facial landmarks, inverse warping, blending and motion filtering.
Facial landmarks are detected using dlib library. Delaunay
Triangulation and Thin Plate spline are used for inverse warping.
To detect the feature points more accurately, 3D face mesh is used
in deep learning technique. All these techniques are implemented
and discussed in detail in this project.

I. PHASE1

A. Overview

The goal of the project is to implement Face detection
pipeline to replace face in a video with celebrity as well
as swapping two faces within the video. The pipeline for
the traditional approach can be implemented using followng
steps:
1. Detection of Facial Landmarks
2. Inverse Warping using Thin Plate Spline and Triangulation
3. Replacing the face
4. Blending the output to get an even texture and brightness.

These steps are described in detail in next sections.The
pipeline is given by following figure:

Fig. 1. Face Swapping pipeline

B. Facial Landmarks Detection

This is the most important step in the pipeline. This step
help in finding corressponding points between two faces. There

are many techniques for Face Features detection like using
Hog Classifier, Haar Cascade filters etc. For this project, I have
used inbuilt OpenCV library- dlib for detecting facial fiducials.
Dlib library in OpenCV requires using a trained model file.
For traditional approach, that trained file is based on hog filters
and Linear SVM classifier. This gives out 68 facial landmarks.

The output for the facial landmarks on Scarlett Johanson
and Robert Downey Jr.(Stark) is shown below:

Fig. 2. Stark Facial Landmarks

Fig. 3. Scarlett Facial Landmarks



C. Delaunay Triangulation

The next step after detection of facial landmarks is to warp
the image of one face to another. Ideally, 3D information
is required to properly warp it. But for this traditional
approach we warped using 2D information. The image with
facial points is subdivided into triangles and assuming that
each triangle content is planar, we can warp using affine
transformation.

Delaunay Triangulation is one of the fastest technique to
obtain the triangulation in an image. It is equivalent to dual
of Voronoi diagram. This techniques with each addition of
point tries to maximize the smallest angle in each triangle.

The output after applying Delaunay Triangulation is shown
in figure below:

Fig. 4. Stark Triangulation

Fig. 5. Scarlett Triangulation

D. Inverse Warping using trangulation

After computing the triangulation I have observed that all
the triangles of faces are not corresponding. To resolve this
issue, I found two ways-

1. Using average of those two faces facial features and
compute delaunay triangulation on those points and use that
to find the corresponding triangles.

2. Using the convex hull points and doing triangulation
using them. I found that triangles are coming out to be
similar in both faces using this approach. This also reduces
computation time but decreases fitting accuracy because some
triangles near nose are bigger this way.

For implementation of inverse warping using triangulation,
I have used 2nd approach. In later sections, better approaches
for inverse warping are discussed.

For this part of project, I computed barycentric coordinates
for each point within rectangle of destination image. These
barycentric coordinates have property that their values will lie
between (0,1] but in practical programming, that’s not exactly
true. As I was getting some holes in the boundary of triangles,
so to avoid them I have set the range as (-epsilon,1+epsilon]
of the coordinates to get the points within triangle.

Using the braycentric transformation matrix, I found the
corresponding points in source image. As these points are
coming to be as decimal, I have used scipy interpolate
function to compute the accurate color at these positions from
the neighborhood pixels.Using the pixel colors from those
points I have replaced the color of pixels in corresponding
points in the destination.

Another approach for trianulation is by using the warp affine
inbuilt function. This gives the similar output but is much
faster than barycentric approach.

The final output from this step is shown below:

Fig. 6. Face Warping using Traingulation



E. Face Warping using Thin Plate Splines

As faces have compex structure, instead of using triangu-
lation approach, It is better to used thin plate splines as they
will be able to fit a smooth and differentiable function for such
complex shape. TPS is like beating a thin sheet of metal at
the feature points. We have 68 feature points, all these points
are transformed by multiplying with weight of those control
points.

These thin plates are shown in figure below:

Fig. 7. Thin Plate Splines

These TPS are used for both x coordinates and y coordinates
seperately and used to find the corresponding points in the
images.

The output of warping using TPS is shown below:

Fig. 8. Face Warping using TPS

It gives smooth output in comparison to previous technique
used. The main difference however is because for triangulation
convex hull points are considered but for this technique all
the facial points are considered. The difference will be less
visible if average point approach is used for triangulation for
correspondences.

F. Blending

Now as we can see from previous section outputs, that
there is a texture difference between the outputs of the
images. To improve the output, poisson blending is used.
OpenCV has inbuilt function seamless clone for doing this
blending. I have used that function for blending these two
images.

Two types of cloning can be performed using the inbuilt
function- Normal and Mixed. In Normal Cloning the texture
( gradient ) of the source image is preserved in the cloned
region. In Mixed Cloning, the texture ( gradient ) of the cloned
region is determined by a combination of the source and the
destination images. Mixed Cloning does not produce smooth
regions because it picks the dominant texture ( gradient )
between the source and destination images.

For this project, I have used Normal cloning.
The output of this blending technique after warping is shown

below-

Fig. 9. Final Output using Triangulation

Fig. 10. Final Output using TPS



G. Motion Filtering

Our goal was to swap faces in the videos, after following
the above pipeline I was able to get good results, but there
were some flickering issues.
I thought of two ways to avoid this type of issue- 1. We
can take average of faces from two consecutive frames af-
ter warping and then find a average face. Insert that be-
tween those frames. 2. The approach I tried was using
cv2.fastNlMeansDenoisingColoredMulti The first argument is
the list of noisy frames. Second argument imgToDenoiseIndex
specifies which frame we need to denoise, for that we pass the
index of frame in our input list. Third is the temporalWindow-
Size which specifies the number of nearby frames to be used
for denoising.

I did not find much difference in output even after applying
this filtering approach.

II. PHASE2

A. Overview

PRNet generates a full 3D mesh of the face and its dense
correspondence from a given single 2D image. A UV position
map, which is a 2D image recording the 3D coordinates
of a complete facial point cloud, and at the same time
keeping the semantic meaning at each UV place. Position map
Regression Network (PRN) is a convolutional neural network
which jointly predicts dense alignment and reconstruct 3D
face shape. The architecture of PRN is shown in figure below.
Green rectangles are residual blocks and blue rectangles are
transposed convolutional layers.

Fig. 11. PRN

The face swapping output generated from PR Network is
shown in figure below:

Fig. 12. Final Output using PRNet

Fig. 13. Final Output using PRNet

As we can see from the outputs , the face swapping output
picks features from forehead and sides as well.

This PRNet uses cnn model of dlib to find features. It gives
output facial features as 68x3. It gives the values of facial
features in three dimensional. Instead of previous traditional
technique where we are getting facial features in 2-d.
To generate the final output, same pipeline is being followed
as it was in traditional approach. The only difference is using
the output from 3d mesh of face. The comparison of output
is done in next section.



III. OUTPUT DISCUSSION

I have saved all the output videos in TestSetOutput folder
and Data folder. The output is generated using affine inbuilt,
triangulation and barycentric, thin plate splines as well as prnet
approach.

The fastest among the four approaches is using warp Affine
function after traingulation. Barycentric approach is the slow-
est among these. I have to resize the inputs for some videos
to speed up the output.

Using traditional approach, there are more frames in which
dlib 68-point hog+svm detector failed to detect the faces
especially in last Test3. But dlib used in prnet with cnn model
is able to detect faces even sideways properly.

The best results are obtained from prnet in all the test
videos.In some frames output from TPS and prnet are com-
parable. But prnet has some extra forehead features from the
source where as traditional method does not have any forehead
features.

I have attached the frame from Phase1 and Phase2 output.
Phase2 is little blurry because of resizing.
Please follow the read me instructions to run the code.

Fig. 14. Final Output using Phase1

Fig. 15. Final Output Phase2

REFERENCES

[1] Image Denoising- https://opencv-python-tutroals.readthedocs.io/en/latest/
[2] TPS- https://profs.etsmtl.ca/hlombaert/thinplates/
[3] Seamless Cloning - https://www.learnopencv.com/seamless-cloning-

using-opencv-python-cpp/
[4] FaceSwap - https://www.learnopencv.com/face-swap-using-opencv-c-

python/
[5] PRNET- https://github.com/YadiraF/PRNet
[6] Project Guidelines- https://cmsc733.github.io/2019/proj/p2/


