FaceSwap

John Kanu
PhD Student, Computer Science, UMD
Email: jdkanu@cs.umd.edu

Abstract—In this paper we present and compare several
methods for swapping faces between images and videos.

I. INTRODUCTION

In this paper we discuss several approaches to swapping
faces between images and videos. We present a triangulation
method using Barycentric coordinates, a method using Thin
Plate splines, and a deep learning approach. Methodology,
experiments, results, and analysis are included below.

II. TRADITIONAL APPROACH
II1. FACIAL LANDMARKS DETECTION
A. Model pre-trained on iBUG 300-W

At the base of our pipeline is a model that detects the
facial landmarks in an image. The model is pre-trained on
the iBUG 300-W face landmark dataset from the 300 Faces-
In-The-Wild Challenge [1]. The model available in the d1ib
library. This module is agnostic to the particular domain of
the image, whether it is a single standalone image or a frame
in a video. Thus, we apply it at our discretion to produce
facial landmarks in various locations in our pipeline. Given
an image, the model outputs a boundix box rectangle of the
face along with the (x, y) locations of each of the 68 fiducials.
Below is an example output.

Fig. 1: Example Delaunay triangulation

Srinidhi Sreenath
Masters Student, Robotics, UMD
Email: ssreenat@terpmail.umd.edu

IV. WARPING

A. Triangulation

Given source image [4 and destination image [p, the
task is to map the RGB color values at locations on the
face in I4 to the corresponding locations in the face in Ip.
Without information on the 3-dimensional information on the
geometry of the face, we use the method of triangulation to
map pixel values from 4 to Ip. Triangulation subdivides
the 2-dimensional image into triangles that cover the face,
resembling the projection of a 3-D polygonal approximation
of the true surface of the face in 3 dimensions onto the image
plane. Our method generates isomorphic triangulations of the
faces in 14 and Ipg, such that triangles in each image can
be paired together and pixels in /g are mapped to a unique
(z,y) position in the corresponding triangle in I 4, so that the
color intensity values can be mapped between the images. The
triangulation algorithm we employ is Delaunay triangulation.

1) Isomorphic Triangulations: In our implementation, we
require that the graphs are isomorphic. Using Delaunay tri-
angulation alone, there is no guarantee that the two graphs
produced by the triangulation will be isomorphic. Figure
2 demonstrates this. In order to enforce isomorphism, we
compute a weighted average of the fiducials in 4 and Ip
and generate a triangulation on this third set of points, which
is a graph that can be mapped to the individual sets of fiducials
in [4 and Ipg.

Fig. 2: Demonstration of non-isomorphism of Delaunay trian-
gulation on different sets of fiducials. Notice the edge in the
forehead points in two different directions between the two
images.

2) Optimal Triangulations: After mapping the graphs from
the third set of keypoints to each original set, the triangles may
overlap, as the vertices may cross edges in the image plane. In
order to minimize this undesirable phenomenon, we search the
parameter space of the weighted average to minimize overlap,
computed using a geometry library.

Given landmarks L 4 and Lp we compute the third set of
landmarks as

L,:=r-Ly+(1-7r)-Lp

Denote the edges found by Delaunay triangulation on L,
as F,, and the graph created by mapping edges back to
L and Lp as E# and EZ, respectively. Let the function
Overlap (F) compute the total area of overlap between all
pairs of triangles created by edges E. The weight for the
optimal triangulation for minimizing artifacts is then computed

as

r* = argmin (Overlap (Ef) + Overlap (Ef))

This selection results in isomorphic triangulation graphs that
are of acceptable quality, as shown in Figure 3.

Fig. 3: Optimal triangulations for two sample images mapped
to the original images. Notice that the graphs are now isomor-
phic.

B. Warping using Barycentric coordinates

Mapping the color intensity values between pixels in corre-
sponding triangles T4 and T is performed by the following
procedure:
1) Compute the Barycentric coordinates «, 3,7y for any
pixel in T'p

2) Compute the position of the corresponding position in
Ta

3) Interpolate the color intensity value at this location in
14

4) Copy the color value to the location in Ip

The condition for detecting whether a pixel is inside a
triangle is given by the following formula:

a€[0,1],8 €[0,1],7 € [0,1]

a+pf+v=1

Artifacts are minimized by adjusting boundaries of intervals
with small epsilon values, given by

[ORS [7651+d7ﬂ€ [76a1+6]77€ [76a1+6]

l—e<a+p+y<1+e¢

Figure 4 shows an example output for this method.

C. Warping using Thin Plate Spline

Triangulation assumes that we are doing affine
transformation on each triangle. To better represent the
human face, transformation using Thin Plate Splines (TPS)
is used to model arbitrarily complex shapes.

The TPS in this context maps from the feature points of the
target image (B) to the source image (A). 2 splines are fit, one
for x direction and another for y direction. (x,y) represent the
coordinates of feature points in B, and (u,v) represents the
coordinates of feature points in B

e The first spline maps from x coordinates of the feature
points in B, to feature points in A. The spline equation
is as follows:

u= folz,y) = art(as)z+(ay)y+y_ wU(|(i,5:) — (@ 9)],)

i=1

o The second spline maps from y coordinates of the feature
points in B, to feature points in A. The spline equation
is as follows:

v = fy(@y) = art(ag)ot(ay)y+ Y wil (|2 y:) = (2,9)],)

i=1

where p represents the total number of landmarks in target
image B and

U(r) = r*log, 12

The pipeline of TPS is as follows:

 The parameters of the TPS i.e a1, ay, a, and the w}s for
i € [0, p] are calculated for each of the two splines.

o Once the parameters are obtained, for each (z,y) in
image B, the corresponding pixel position in image A i.e
(u,v) is obtained using the thin plate spline equations.

¢)\ is aparameter to be set while estimating the parameters.
We kept the vale of A = e~ for the best result of TPS.
Other values such as A = e% and \ = ¢~ 16 were also
tried and it gave suboptimal results.

o The pixel information at (u,v) of A is filled into the
(z,y) position in B.

Figures 4 and 5 show the outputs for both methods.

Fig. 4: A comparison of warps using Barycentric coordinates
(left) and Thin Plate Spline (right).

D. Replace Face

Replacing the face was as simple as writing the values
as defined in the procedures above. No further processing
was performed in order to correctly insert the values of the
pixels. Once the required pixels in target image B are filled
with information from image A, the faces are essentially
warped. A sample of the warped face is shown below. But,
since the direct pixel replacement doesn’t look natural due to
differences in skin tones, the warped image has to blended to
fit the tone of the original target image.

E. Blending

In order to accomplish this, poisson blending techniques
can be used. The original image’s texture is applied to
the warped image to clone the swapped face. The built-in
OpenCV function seamlessClone is used with NORMAL_
CLONE. A mask of the face region of the target region that
is replaced is to be given as an input as well as the center of
the blended result.

o For the mask, a convex hull of the feature landmarks
for target image is obtained and the binary image of the
convex hull (1 inside hull and 0 otherwise) is the mask
needed.

e The centroid of the convex hull (also the center of the
bounding rectangle of the convex hull) is the center where
the blended face is to be placed on the original image.

Here is a demonstration of the performance of the method
on very different images.

Fig. 5: A comparison of final blended outputs using Barycen-
tric coordinates (left) and Thin Plate Spline (right).

v y y
Fig. 6: Cristiano Ronaldo onto Toni Kroos using Thin Plate
Spline method

Fig. 7: Jimmy Fallon onto Paul Rudd

F. Motion Filtering

Motion filtering is achieved by first generating a sequence of
predictions for the locations of the 68 keypoints for both faces
in all frames of a video. Due to inherent error in the landmark
models, after generating the predictions, there is no guarantee
that the positions will resemble continuous transformations of
the head in 3-D space, so invoking the warping and blending
on only this sequence will appear unstable and shaky when
viewed on videos of common frame rates (around 30 fps).
Thus, in order to maximize the aesthetic appeal of the video
after generating landmarks, warping, and blending, we first
perform a smoothing step on the sequence of landmarks, so
that flickering is minimized.

Fig. 8: Playful demonstration of warping using Barycentric
coordinates. Left: target image, Center: input image, Right:
output

We created our own smoothing method to minimize the
amount of flickering. Given N frames, a sequence of landmark
positions

{Li}i=1,..N

over the NV frames, and a weight parameter w, we compute
the smoothed value as

for:=1

S, = Lla
T w-Li+(1—w)-L;—q, fori=2,..,N

We found the value w = 0.5 achieves appealing results.

V. DEEP LEARNING APPROACH

Joint 3D Face Reconstruction and Dense Alignment with
Position Map Regression Network (PRN). PRN is a method
to jointly regress dense alignment and 3D face shape in an
end-to-end manner. This method can be used to swap 2 faces
or obtain fiducial features when faces are detected in an image.

The PRNet trained model was downloaded and was used in
the detection of fiducial features. The codebase was modified
for 3 functionalities, each one described below.

A. Obtain fiducial features from the model

The fiducial features were obtained using the deep learning
network. The module uses dlib library for detecting faces
and then positions of facial features are obtained from the
network. Then these points are used to obtain the 68 facial
landmarks. A sample of the fiducial features obtained from
the model is shown below:

Fig. 9: Fiducial features from PRNet

Once the 68 landmark points are obtained, then the 68 points
are used in the traditional pipeline to swap the faces in the
desired images. The traditional pipeline uses Thin Plate Spline
(TPS) method to swap the faces in this case.

: (b) Face Swapped with Tri-
(a) Face Swapped with TPS angulation

y:

(b) Face Swapped with Tri-
(a) Face Swapped with TPS angulation

B. Directly obtain swapped faces

The codebase for the PRNet also has an option to directly
obtain the swapped faces when 2 images are given as input.

This method used the texture obtained from the source image
to perform poisson blending on the target image. A sample
output is shown below:

Fig. 14: Fiducial features from PRNet

D. Outputs for Datal

Fig. 13: Directly swapped texture image

This method is used when a video with frames containing
a single target face needed to be swapped with a static source
image. The DatalOutputPRNet.mp4 result is obtained by this
methodology.

Fig. 15: Input image for one of the frames

C. Obtain fiducial features for multiple faces

The original codebase for the PRNet uses dlib for detecting
faces and using those faces to detect fiducial features from
the network. However, when multiple faces are detected in a
single image, then only the first and largest face detected is
considered and the other images are ignored.

The code was modified in such a way that when multiple
faces are detected, the network is used to obtain the fiducial
features for the 2 largest faces.

Once the facial landmarks are obtained for the 2 largest
faces in a single image, then the traditional pipeline is used
to swap the faces. The traditional pipeline uses Thin Plate
Spline (TPS) method to swap the faces in this case. The

Data2OutputPRNet.mp4 result is obtained by this methodol- Fijg 16: Output image for one of the frames, using PRNet
ogy. A screengrab of the video is shown here:

Fig. 17: Output image for one of the frames, using TPS Fig. 20: Output image for one of the frames, using PRNet

Fig. 18: Output image for one of the frames, using Triangu-
lation

E. Outputs for Data?2

Fig. 22: Output image for one of the frames, using Triangu-
lation

VI. ERROR ANALYSIS
A. Error Type 1: Smile artifact

When the person in the source image is not smiling, and the
person in the target image is smiling, the colors of the pixels
mapped into the mouth region in the destination image do not
‘ have the appearance of teeth, which one would expect to see
Fig. 19: Input image for one of the frames in between the keypoints of an open mouth. Figures 23 and
24 demonstrate this error case.

B. Error Type 2: Light properties mismatch

When the lighting between the two images are widely
different, there is a high risk of qualitative error in the blending
procedure. In Figure 25, we can observe that the face in the
target image has a different surface lighting pattern than the
face in the output image. Here, it appears that the blending
algorithm could have done a better job at matching the lighting
of the surface of the face to the new 3-dimensional scene.

C. Error Type 3: Large difference in perspective

When the perspectives of the two images are very different,
the direction of the faces point in very different directions.
The two interpolation algorithms we tried are incapable of
mapping small surfaces to large surfaces, as there is a paucity
of information present at the low level. Whereas a human
creating this warping may use high-level information and avoid
pixelation of the surface, the Barycentric coordinate and Thine
Plate Spline methods fail to generate a visually appealing
result.

Fig. 25: Steve Jobs onto Bill Gates

Fig. 26: Rowan Atkinson onto Jeremy Clarkson

REFERENCES

[1] C. Sagonas, E. Antonakos, G, Tzimiropoulos, S. Zafeiriou, M. Pantic.
300 faces In-the-wild challenge: Database and results., 3rd ed. Image
and Vision Computing (IMAVIS), Special Issue on Facial Landmark
Localisation ”In-The-Wild”. 2016.

