
CMSC733: Project 2 - FaceSwap
Khoi Viet Pham - Gnyana Teja Samudrala

Email: khoi@terpmail.umd.edu - sgteja@terpmail.umd.edu
Use 1 late day

Fig. 1. Order of facial fiducials from dlib library (source: [1])

I. PHASE 1: TRADITIONAL APPROACH

In this section, we will present in details our approach to
perform Face Swap in 2 scenarios: (1) between two faces in
the same video, (2) a face in video with a face in an image.
The video is read as frames and operation is perfomed on
each frame individually. In the following subsections, we will
describe our pipeline and present the output on two frames of
each video for every step.

We mainly follow the steps listed in the instructions. The
algorithm consists of 3 main steps: (1) Facial Landmarks
Detection, (2) Face Warping (using (a) Triangulation or (b)
Thin Plate Spline), and (3) Blending.

A. Facial Landmarks Detection

The first step in the algorithm is to detect facial fidu-
cials/landmarks. This is done using the “dlib” library. Using
this library we can obtain the location (x, y) of 68 keypoints of
the detected face. The points are identified using a pre-trained
model. It returns the points in the order shown in fig. 1. The
output of this step can be seen from fig. 2 to 5.

B. Warping using Triangulation

In this step, we will use the detected facial landmarks
to create the Delaunay Triangles. This algorithm tries to
maximize the smallest angle in each triangle, and from this, we
can obtain the same triangulation between the source and the
target face image. This solves the correspondance problem.

Fig. 2. Facial landmarks detected using dlib library on one frame in video
Data1.mp4.

Fig. 3. Facial landmarks detected using dlib library on a face image of Jay
Chou (a singer) (source: [2]), which we use to morph with the face in video
Data1.mp4.

Fig. 6 to 9 show some examples of the triangulation step
performed on some images.

Now we warp the triangles from the target face to the
source face. This inverse warping makes sure that there are no
spots left untouched. We use barycentric coordinates to make
sure that the points lie inside the triangle. We then iterate
over all pixels in the target face, use interpolation to find the

Fig. 4. Facial landmarks detected using dlib library on face 1 in video
Data2.mp4.



Fig. 5. Facial landmarks detected using dlib library on face 2 in video
Data2.mp4.

Fig. 6. Triangulation performed on one face in video Data1.mp4.

corresponding pixel and copy its color from the source face.
We also would like to discuss our implementation to iterate
over all pixels in the target face here.

Our goal is that: for each pixel in the target face, we
have to find the triangle in the target face’s triangulation that
contains it. Simply using two nested for loop, one loop for
the pixel and one loop to find its triangle, is not efficient.
Let N be the total number of pixels in the face and M
be the total number of triangles, this approach has time
complexity O(N ×M). Therefore, we propose an algorithm
(which we implement as function triangle interior iterator in
file helper.py) to efficiently iterate over all face pixels and
at the same time know what triangle contains it, with time
complexity only O(N). The idea is that: for each triangle, we
can find the minimum and maxium y-coordinate of its vertices;
then, we use a line-sweep approach to iterate a horizontal line
from ymin to ymax; for each horizontal line position, we can
find its intersection points with any 2 sides of the triangle;
from these 2 intersection points, we will know the minimum
and maximum x-coordinate so that we can iterate over all
pixels on this horizontal line (more details can be found in
the code). This approach greatly improves the running time of
our pipeline.

The output of the warping step can be seen from fig. 10 to
12.

C. Thin Plate Spline

The output of the warping step using Thin Plate Spline
instead of Barycentric coordinates can be seen from fig. 13
to 15 .

Fig. 7. Triangulation performed on an image of Jay Chou (source: [2]), which
is then used to morph with face in video Data.mp4.

Fig. 8. Triangulation performed on face 1 in video Data2.mp4.

Fig. 9. Triangulation performed on face 2 in video Data2.mp4.

Fig. 10. Warping using Barycentric coordinates performed on face in video
Data1.mp4 with the face of Jay Chou.



Fig. 11. Warping using Barycentric coordinates performed on face 1 in video
Data2.mp4 with face 2 in the same video.

Fig. 12. Warping using Barycentric coordinates performed on face 2 in video
Data2.mp4 with face 1 in the same video.

Fig. 13. Warping using Thin Plate Spine performed on face in video
Data1.mp4 with the face of Jay Chou.

Fig. 14. Warping using Thin Plate Spine performed on face 1 in video
Data2.mp4 with face 2 in the same video.

Fig. 15. Warping using Thin Plate Spine performed on face 2 in video
Data2.mp4 with face 1 in the same video.

Fig. 16. Result after blending on one frame in Data1.mp4, warped using
triangulation.

D. Blending

The face which is overlapped over the target image is to
be blended into it, to make it look natural such as to match
the skin tone, lighting conditions etc. We have written our
own implementation for Poisson Blending (in the function
insert face in helper.py). Even though our implementation
produced nice results, its running speed is not as efficient
as the seamlessClone function which is built in OpenCV
(which is obvious, but we still want to try implementing
Poisson blending ourselves to get a feeling of how it works).
Therefore, we move on to use seamlessClone in our final
implementation. We have one interesting observation when
using Poisson blending. In order to get more visually appealing
result, before applying Poisson blending, it is better to perform
erosion (a well-known image processing operation) to reduce
the size of the mask a little. This helps the mask totally lie
inside the interior of the face, which helps Poisson blending
algorithm to better mimic the actual color of the target face.
Otherwise, if we do not do this, Poisson blending will mimic
the color of the background, which might not reflect correctly
the color of the target face.

The final output of this step can be seen in the images from
fig. 16 to 19.

II. PHASE 2: DEEP LEARNING APPROACH

We used the code [3] from the paper given [4] in the
instructions to obtain the facial fiducials using deep learning.
This output of the facial landmarks provided by the network
is presented in the images from fig. 20 to 23. This is used



Fig. 17. Result after blending on one frame in Data1.mp4, warped using Thin
Plate Spline.

Fig. 18. After doing blending operation on Data2 warped using Triangulation

to perform the face swap by using the Triangulation and Thin
Plate Spline algorithm implemented above. The results of the
whole deep learning pipeline can be seen from fig. 20 to 37.

III. RESULTS ON TEST SET

We demonstrate our results on the test set from fig. 38 to
46. We notice several problems with our results on the test
set:

• PRNet does not produce correct facial landmarks loca-
tions, which result in the face warping incorrectly (fig.
40, fig. 43, and fig. 46).

• Faces not detected in some frames. For example: in video
Test2.mp4, when the two people look at each other,
their faces are not in frontal pose anymore and thus our
frontal face detector dlib failed to detect them; in video
Test3.mp4, some frames are very dark and our detector
cannot locate the face. One other interesting observation
is that: in our implementation, PRNet uses a different
face detector which can even find the face that is not in
frontal pose; this is opposed to the face detector we use

Fig. 19. After doing blending operation on Data2 warped using Thin Plate
Spline

Fig. 20. Facial landmarks detected using PRNet on one frame in video
Data1.mp4.

Fig. 21. Facial landmarks detected using PRNet on Image which will be
morphed with Data1 face

Fig. 22. Facial landmarks detected using PRNet on Data2, face1

Fig. 23. Facial landmarks detected using PRNet on Data2, face2



Fig. 24. Triangulation performed on video Data1.mp4 using landmarks from
PRNet.

Fig. 25. Triangulation performed on image of Jay Chou which will be
morphed with Data1.mp4, using landmarks from PRNet.

Fig. 26. Triangulation performed on Data2, face1 using landmarks from
PRNet.

Fig. 27. Triangulation performed on Data2, face2 using landmarks from
PRNet.

Fig. 28. Triangulation warp using Barycentric coordinates performed on
Data1 using landmarks from PRNet.

Fig. 29. Triangulation warp using Barycentric coordinates performed on
Data2, face1 using landmarks from PRNet

Fig. 30. Triangulation warp using Barycentric coordinates performed on
Data2, face2 using landmarks from PRNet

Fig. 31. Thin Plate Spine performed on Data1 using landmarks from PRNet.



Fig. 32. Thin Plate Spine performed on Data2, face1 using landmarks from
PRNet.

Fig. 33. Thin Plate Spine performed on Data2, face2 using landmarks from
PRNet.

Fig. 34. After doing blending operation on Data1 warped using Triangulation
with landmarks from PRNet.

Fig. 35. After doing blending operation on Data1 warped using Thin Plate
Spline with landmarks from PRNet.

Fig. 36. After doing blending operation on Data2 warped using Triangulation
with landmarks from PRNet.

Fig. 37. After doing blending operation on Data2 warped using Thin Plate
Spline with landmarks from PRNet.

for triangulation and thin plate spine, which can only find
face in frontal pose.

• Thin plate spline often produces artifacts. These might
be the results of not applying enough regularization when
solving the linear system of equations using least squares.

REFERENCES

[1] I. Jos, “Facial mapping (landmarks) with dlib + python.”
[Online]. Available: https://towardsdatascience.com/facial-mapping-
landmarks-with-dlib-python-160abcf7d672

[2] “Image of jay chou.” [Online]. Available:
http://www.sohu.com/a/294739527 114988

[3] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face recon-
struction and dense alignment with position map regression network,” in
ECCV, 2018.

Fig. 38. Results on video Test1.mp4, using triangulation with dlib facial
landmarks.

Fig. 39. Results on video Test1.mp4, using Thin Plate Spline with dlib facial
landmarks.



Fig. 40. Results on video Test1.mp4, using triangulation with PRNet facial
landmarks.

Fig. 41. Results on video Test2.mp4, using triangulation with dlib facial
landmarks.

Fig. 42. Results on video Test2.mp4, using Thin Plate Spline with dlib facial
landmarks.

Fig. 43. Results on video Test2.mp4, using triangulation with PRNet facial
landmarks.

Fig. 44. Results on video Test3.mp4, using triangulation with dlib facial
landmarks.

Fig. 45. Results on video Test3.mp4, using Thin Plate Spline with dlib facial
landmarks.

Fig. 46. Results on video Test3.mp4, using triangulation with PRNet facial
landmarks.

[4] ——, “Joint 3d face reconstruction and dense alignment with position
map regression network,” CoRR, vol. abs/1803.07835, 2018. [Online].
Available: http://arxiv.org/abs/1803.07835


