
CMSC 733 Project 2 Report
Face Swap

Darshan Shah
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: dshah003@umd.edu

Mayank Pathak
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: pathak10@umd.edu

I. INTRODUCTION

Given an image and a video stream, this project aims to
implement end to end pipeline to swap faces. We achieve this
goal with both traditional and deep learning approaches and
then analyse the outcomes from both the methods.

II. PHASE I: TRADITIONAL APPROACH

In this traditional pipeline, we implement image processing
techniques using OpenCV and dlib. The overall pipeline is as
follows: a. we read the image and detect the number of faces
and then detect facial fiducials from the face. This is done for
both, the source image and the target image. b. Triangulation
and hence meshing is done based on the facial fiducial points
c.a. Warping each of these meshes from the source to their
corresponding mesh in the target image. d. Once the warping
is done, the cropped image is blended with the target image to
get a smooth image. The following sections cover these steps
in detail.

1) Input image: Figure 1 and 2 shows the input image used
for developing and testing the Phase 1 of this project

The image is loaded and converted to Gray-scale. We
made use of the get_frontal_face_detector() and
shape_predictor() functions from the dlib library.
These further detect faces in the given image and also returns a
list of 68 points each corresponding to a very specific landmark
feature on the face. Due to which we get point correspondences
for both the faces. This correspondence proves to be very

Fig. 1. The input image set 1

crucial when applying triangulation and creating meshes. The
output of the dlib feature detector is as shown in figure 3. Not
all the points in the image are non-colinear to form triangles
hence, we decided to only consider the points lying on the
outside od the face. We do this by computing the Convex hull
from all the points using the convexHull() function from
openCV.

A. Warping using Triangulation

1) Triangulation: The facial landmarks obtained in the
previous section act as the bases for the triangulation to
be done in this step. We have made use of the Subdiv2D
package provided by openCV. The getTriangleList()
funciton returns the coordinates of all the vertices of each
of the triangles formed during triangulation. This process of
triangulation is performed on both, the source and Target
image. Figure 4 shows the output of the triangles formed on
both the Source and Target images.

2) Transformation and Warping: After the process of trian-
gulation, we have obtained corresponding triangles in both the
source and target images. We take advantage of Barycentric
coordinate system to find the transformation of each pixel from
triangle in source image to the triangle in target image. The
Barycentric points are represented by α, β, γ

We estimate the bounding box of each triangle and itera-
tively compute The Barycentric coordinates of each pixel and

Fig. 2. The input image set 2



Fig. 3. 62 features detected by dlib’s frontal face detector

Fig. 4. Output of Delaunay Triangulation on the input image.

check if they lie inside the triangle or not. This is done by
performing the following check:

α >= 0, β > 0, γ > 0, α+ β + γ <= 1

If the pixel does lie within the triangle, with the help of
barycentric coordinates, it’s corresponding pixel location is
found in the target triangle. To prevent holes in the image
while transforming, we use inverse transformation as opposed
to forward transformation. However the results are still not
satisfactory. Ideally, to get a nice image, we need to have
as many triangles as possible. However, this is a workable
approximation. Finally the target image is blended with the
source image using seamlessClone function of openCV.
The seamlessClone Since we are dealing with pixel level
manipulation, this process is computationally intensive and
takes a while to execute. Hence it isn’t the best method for
this application.

The output of Triangulation is shown in the figure 5

B. Thin Plate Splines

Thin Plate Splines(TPS) can model arbitrary complex
shapes and hence provide better results as compared to train-
gulation method used earlier.

Parameters of TPS are obtained by performing the matrix
manipulation as suggested by authors in [1]. Lambda is used
as e−5, to account for noise and make sure that the (p+3)×
(p+ 3) matrix is non-singular.

Fig. 5. Output of face swap by traingulation

(a) Sample input image for TPS

(b) face fiducials as detected by dlib

Fig. 6. Sample Destination and Source images for TPS

C.

III. PHASE II: DEEP LEARNING APPROACH

In this Phase, a pre-trained supervised encoder-decoder
model is used to obtain the face fiducials [2]. The code from
the paper is used as refernce for implementing this part of the
project.

The encoder part of network begins with one convolution
layer followed by 10 residual blocks, which reduce the 256
256 3 input image into 8 8 512 feature maps. The decoder
part contains 17 transposed convolution layers to generate the
predicted 256 256 3 position map. A kernel size of 4 is
used for all convolution or transposed convolution layers, with
ReLU layer for activation.

The trained model is saved in the project directory and is
used for face swapping. Figure 8 shows some sample input
images.

IV. FAILURE CASES

All the above implemented methods fail to detect a face
if the face alignment is not proper as shown in figure 11a.
Also, Triangulation method fails most out of the three methods
in detecting faces provided the same data-set. For the figure



(a) Face masks for the images

(b) Output of TPS face swapping

Fig. 7. Face swap output for the sample images, using TPS.

(a) Sample destination image

(b) Sample source image

Fig. 8. Sample input images used for testing network

11b TPS and PRNet manage to give an output whereas
Triangulation fails to find a face.

V. RESULTS COMPARISION

On observing the outputs, processing time and computa-
tional complexity of both the approaches, We can conclude
that PRNet provides way better results, with less flickering and
good color blending. The results of Triangulation are, however,
not as satisfactory and the face warping is not up to par with
other two methods. The process of Triangulation is piece-wise
linear and assumes the transformation to be planar. whereas
on the other hand, the neural net outputs a smooth face warp
created from a 3D reconstructed face based on it’s features.

Fig. 9. Texture extracted from the source image

(a) Source face swapped on the destination image

(b) Output after seamless blending

Fig. 10. Face swap output for the sample images, using PRNet.

(a) Failure case 1 where face is not visible

(b) Output by TPS method

Fig. 11. Failure Cases



(a) Output by Triangulation method

(b) Output by TPS method

(c) Output by PRNet

Fig. 12. Comparision between all outputs

Between TPS and PRNet, PRNet gives better results ac-
counting for different face alignments and illuminations. How-
ever, the Computation time required for PRNet is much more
that what required for TPS. Also, close results can be obtained
by applying edge dilution and seamless color morphing on the
top of of TPS output.

REFERENCES

[1] Gianluca Donato and Serge Belongie. Approximate thin plate spline
mappings. In Proceedings of the 7th European Conference on Computer
Vision-Part III, ECCV ’02, pages 21–31, Berlin, Heidelberg, 2002.
Springer-Verlag.

[2] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint
3d face reconstruction and dense alignment with position map regression
network. CoRR, abs/1803.07835, 2018.


