
Project 2: FaceSwap
(Using 1 Late Day)

Rohitkrishna Nambiar (115507944)
University of Maryland

College Park, Maryland 20740
rohit517@umd.edu

Rohith Jayarajan (115458437)
University of Maryland

College Park, Maryland 20740
rohith23@umd.edu

Abstract—In this project we explore the application of
FaceSwap using different methods such as Triangulation and
Thin Plate Spline (TPS) fitting. We use dlib and PRNet for
detecting facial landmarks. Different blending methods are stud-
ied to provide a seamless face swapping. We then compare the
outputs of the traditional approach with the deep learning based
approach and present outputs of different test scenarios.

I. INTRODUCTION

II. FACE WARPING USING TRIANGULATION

The traditional method of swapping spaces is discussed in
this section. A block diagram of the process is shown in
diagram 1.

Fig. 1. Overview of the face swapping pipeline.

A. Facial Landmarks detection

Given a face we find the landmarks or important points
on the face so as to achieve a one-to-one correspondence
between the facial landmarks across different faces. Using
facial landmarks reduces the computational complexity of
using all the points on the face. Using all the points on the face
will give us better results. To detect the landmarks in a given
face, the dlib library in OpenCV[1] is used. This uses a model
pre-trained on many human faces with a ResNet architecture.
The output of the landmarks given by dlib is a set of 68
landmark points, describing the eyes, eyebrows, nose, lips and
jawline of the human in the image. The output of the facial
landmarks given by dlib can be seen in figure 2

Once we have obtained the facial landmarks, we make the
approximation that the 3D face can be approximated using
2D shapes formed by the landmarks. This can be done by tri-
angulating the facial landmarks and then performing an affine
transformation between corresponding triangles in two images.

Fig. 2. Facial landmarks detected by dlib.

Triangulation involves forming a triaingular mesh over the 2D
iamage and the best and efficient way to do so is by using
Delaunay Triangulation which can be obtained by drawing
the dual of the Vornoi diagram. Delaunay Triangulation can be
constructed in O(n log n) time. Delaunay Triangulation tries
the maximize the smallest angle in each triangle.

Also to ensure one-to-one correspondences between the
triangulation in both the images, the Delaunay Triangulation
is constructed on one image and used to replicate for the other
image. The function cv2.getTriangleList() in cv2.Subdiv2D
class of OpenCV is used to implement the Delaunay Tri-
angulation. We use inverse warping so that there is no loss
of information while swapping the pixel information of the
faces. We warp face in image A (the source image) to B (the
destination image).

The output of the Delaunay Triangulation given by
cv2.getTriangleList() can be seen in figure 3.

The following steps are followed to implement the swapping
of face A to B.

1) Step 1: For each triangle in B, we compute the Barycen-
tric coordinates using equation 1.



Fig. 3. Delaunay Triangulation given by cv2.getTriangleList().

Ba,x Bb,x Bc,x
Ba,y Bb,y Bc,y
1 1 1

αβ
γ

 =

xy
1

 (1)

Here the barycentric coordinates are given by [α β γ]T .
To compute this we take the inverse of the 3 × 3
matrix. This is done for each triangle using the following
equation αβ

γ

 = B−14

xy
1

 (2)

Using the values of α, β, γ the point is inside the triangle
if α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1] and α +β+γ ∈ [0, 1].

2) Step 2:
Using the barycentric coordinates obtained in the previous
step, we compute the pixel locations in image A usingxAyA

zA

 = A4

αβ
γ

 (3)

where

A4 =

Aa,x Ab,x Ac,x

Aa,y Ab,y Ac,y

1 1 1

 (4)

On obtaining [xA yA zA]
T we convert it to homogeneous

coordinates as follows

xA =
xA
zA

and yA =
yA
zA

(5)

3) Step 3:
In this step, we copy back the pixel value at location
(xA, yA) from image A back to image B.

Using the above steps, we perform face swapping for the
images in 5.

(a) (b)

Fig. 4. Face swap using Triangulation input images

(a)

Fig. 5. Face swap using Triangulation output

III. FACE WARPING USING THIN PLATE SPLINE

The human face is very complex and also has a smooth
shape. Using the triangulation method to perform face swap-
ping is certainly not the best way to do so as it assumes the
transformation is affine in each triangle. A better solution to
face swapping is by using Thin Plate Splines (TPS)[2] which
can be used to model shapes that are complex.

To perform face swapping we want to compute a Thin Plate
Splines (TPS) that maps from the feature points in the Target
Image (B) to the corresponding feature points in Source Image
(A).

The equation for the Thin Plate Spline is given by equation
6.



f(x, y) = a! + axx+ ayy +

p∑
i=

wiU(‖(xi, yi)− (x, y)‖L
)

(6)
where,

U(r) = rlog(r)

We perform an inverse warping here instead of forward
warping so that there are no holes/loss of information in the
process. This is done by finding parameters of a Thin Plate
Spline which maps from B to A. The following steps are
performed to find the parameters of the Thin Plate Spline
equation

1) Step 1: The solution of the Thin Plate Spline model
requires solving equation 7.

[
K P
PT 0

]


w1

w2

...
wp

ax
ay
a1


=



v1
v2
...
vp
0
0
0


(7)

where
Ki,j = U(‖(xi, yi)− (x, y)‖L1

), vi = f(xi, yi)and the ith

row of the matrix P is (xi, yi, 1).
The matrix K is of size p × p and matrix P is of size
p× 3. For a stable solution, the solution of 7 is given by
8



w1

w2

...
wp

ax
ay
a1


=

([
K P
PT 0

]
+ λI(p+ 3, p+ 3)

)−1


v1
v2
...
vp
0
0
0


(8)

where λ ≈ 0 and I is an identity matrix so that the matrix
can be invertible.

2) Step 2: After the parameters of the Thin Plate Spline
have been computed, all pixels in image B are trans-
formed by the TPS model. After this transformation has
been done, the pixel value is read back from image A
directly. The position of the pixels in A is generated
by solving the TPS equation twice, once for the x
coordinates and once for the y coordinates.

IV. REPLACE FACE

The process of replacing faces is fairly simple. All the pixels
from face in image A are warped and fitted to the face in image
B and pixels are replaced. But just doing this will not give us
a convincing and seamless face swapping as changes in color,
lighting and edges will produce unwanted artifacts.

A replaced face using the pipelines discussed without blend-
ing is shown in figure 6

Fig. 6. Output of face replacement. The difference in color, lighting and
edges give unwanted artifacts.

V. BLENDING

To reduce and to eliminate the effects of artifacts to a
good extent, we use a variant of Poisson blending to blend
the warped face onto the target face. This is performed
using OpencCV’s inbuilt function cv2.seamlessClone(src, dst,
mask, center, flags) where src is the source image, dst is
the destination image, mask is the warped destination image,
center is the position where the mask is to be placed on the
source image and flags specify the type of cloning.

A replace face with blending using the pipelines discussed
is shown in figure 7.

Fig. 7. Output of face swapping using TPS with poisson blending.



VI. DEEP LEARNING APPROACH

In this approach, we use an off-the-shelf deep learning
model called PRNet[3] for fiducial detections. PRNet gives the
same number of fiducial landmarks as dlib along with other
artifacts such as depth and meshing. The architecture is given
in fig. 8

Fig. 8. PRNet architecture

Some of the outputs given by the PRNet can be visualized
below (The images are channel reversed ie. in BGR).

(a) (b) (c)

(d) (e) (f)

Fig. 9. PRNet outputs

Using the same two images we used in triangulation, we run
face swapping with blending using the deep learning model.
The output is shown in fig. 10.

VII. EXPERIMENTS

To test our implementation, we considered two scenarios
where we swap a face in the video with an image and the
other where we swap two faces in a video. We created our
two test sets with images shown in Fig.11

A. Traditional Approach

The face swap outputs of our test sets from triangulation and
thin plate spline methods is shown in Fig.12, Fig.13, Fig.14,
Fig.15.

B. Deep Learning Approach Output

We used PRNet to get the fiducial landmarks and used TPS
to swap the faces. We also used the swapping implementation
given in the PRNet code to compare our results. We notice
that PRNet gives a better output in blending as it blends the
forehead as well. This can be seen in Fig.16 and Fig.17.

Fig. 10. Face swapping using PRNet

(a) (b)

(c)

Fig. 11. Test inputs. a) Swap face in video with image. b) Swap faces in
video.

Fig. 12. Face swap in video with image using Triangulation method.



Fig. 13. Face swap in video with image using Thin Plate Spline.

Fig. 14. Face swap in video with image using Triangulation method.

Fig. 15. Face swap in video with image using Thin Plate Spline.

Fig. 16. Face swap in video with image using PRNet.

Fig. 17. Face swap within video using PRNet.

VIII. RESULTS

1) The least effective method for face swap application was
the triangulation method. In the triangulation method,
the 3D face is approximated using 2D shapes formed
by the landmarks. This was done by triangulating the
facial landmarks and then performing an affine transfor-
mation between corresponding triangles in two images.
This use of a triangular 2D mesh over the face image
wasn’t successful in capturing all the information of the
complex structure involved. Its run time complexity was
O(n log n) which is better than that of thin plate spline
method.

2) The thin plate splines method was a significant improve-
ment over the triangulation method. Using this enabled
to effectively capture the information of the complex
structure of the face. Outputs of the warp from the
thin plate spline methods were better than triangulation
method as expected. Its run time complexity however
was O(n3) due to the matrix inversion involved which
is worse than triangulation method.

3) PRNet gives dense meshes, depth outputs and good re-
sults even when the face is facing at an angle not parallel
to the camera. This helps for use in other application
of face morphology. Also since it gives points on the
forehead, the blending output is more visually pleasing.

IX. CONCLUSION

Thus we have implemented Triangulation and Thin Plate
Spline methods for face warping, studied different blending
methods and compared traditional method of implementation
with deep learning based methods.

ACKNOWLEDGMENT

We would like to thank Prof. Yiannis and the TA’s Nitin
and Chahat for their help with the project.

REFERENCES

[1] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[2] F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 11, no. 6, pp. 567–585, 1989.

[3] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face recon-
struction and dense alignment with position map regression network,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 534–551.



(a)

(b)

Fig. 18. Test set 1.

Fig. 19. Face swap in test video 1 with image using Triangulation method.

APPENDIX A
TEST SET OUTPUTS

Below are the results for the test examples.

A. Test Set 1

The face swap outputs of the given test sets from triangu-
lation and thin plate spline methods is shown in Fig.19 and
Fig.20.

The input image and video frame face sequence can be seen
below in Fig. 18

B. Test Set 2

The input image and video frame face sequence can be seen
below in Fig. 22. The face swap outputs of the given test sets
from triangulation and thin plate spline methods is shown in
Fig.23 and Fig.24.

Fig. 20. Face swap in test video 1 with image using Thin Plate Spline.

Fig. 21. Face swap using PRNet and TPS for test set 1.

(a)

Fig. 22. Test set 2.

Fig. 23. Face swap in test video 2 with image using Triangulation method.



Fig. 24. Face swap in test video 2 with image using Thin Plate Spline.

Fig. 25. Face swap using PRNet and TPS for test set 2.

C. Test Set 3

The input image and video frame face sequence can be seen
below in Fig. 26. The face swap outputs of the given test sets
from triangulation and thin plate spline methods is shown in
Fig.27 and Fig.28.

(a) (b)

Fig. 26. Test set 2.

Fig. 27. Face swap in test video 3 with image using Triangulation method.

Fig. 28. Face swap in test video 3 with image using Thin Plate Spline.

Fig. 29. Face swap using PRNet and TPS for test set 3.


