Project 3 Report
An StM Approach

Ameya Patil
Department of Computer Science
University of Maryland
College Park, Maryland 20740

I. INTRODUCTION

The aim of this project was to create a 3D model of a
scene from multiple 2D images of the scene captured from
different perspectives and having common regions between
them. To start with, we were given 6 images of a street scene
with a building in it, a text file describing the 2D image
point correspondences between all possible image pairs and
the calibration matrix of the camera used for capturing the
images.

II. ESTIMATING FUNDAMENTAL MATRIX

RANSAC was performed on the provided point correspon-
dences to get refined correspondences(inliers) as shown in
Figures [T] and 2] The fundamental Matrix was estimated using
the inliers between the first and second image only. The points
were normalized and the 8-point algorithm was used to solve
for the matrix. The singularity constraint was enforced to
change the rank of the matrix from 3 to 2. The computed
fundamental matrix was then denormalized to get the correct
matrix. The Fundamental matrix between image 1 and 2 is as
shown below:

—7.050727¢ 97  —1.541574e=%  3.785774e %3
1.963694e~%  —1.456382¢"%¢ —5.253717¢~%3

—6.296857¢ %3 1.920373¢93 1.346693

III. ESSENTIAL MATRIX FROM FUNDAMENTAL MATRIX

The Essential Matrix was simple to calculate as it involved
adding the presence of the camera matrix to the Fundamental
matrix. The Essential matrix is as shown below:

—0.026652 —0.665084 —0.303668
0.841332 —0.066702  0.501199
0.201903 —0.660052 —0.157527

IV. ESTIMATE CAMERA POSE FROM ESSENTIAL MATRIX

By assuming that the first camera is located at the world
coordinate system origin and aligned with the world coordinate
system, and by factorizing the Essential matrix, 2 rotation
matrices and 2 translation vectors were generated, from which
4 possible camera orientations were generated for the second
image. Using these camera orientations, we created 4 pro-
jection matrices P = K [R t] and used them to generate
real world points from all the image points using the Linear
Triangulation function.

Sigurthor Bjorgvinsson
Department of Computer Science
University of Maryland
College Park, Maryland 20740

V. TRIANGULATION
A. Linear Triangulation

Using the 4 estimated camera poses, we found out the
3D world points corresponding to the matches between the
two images. This was done by performing SVD on a system
of linear equations to minimize the L1 distance between a
projected 3D point and the actual 2D image point.

B. Cheirality Check

Using the 4 estimated camera poses for the second camera
and the triangulated 3D world points, cheirality check was
performed to get the best camera pose. The correct camera
pose would have the fewest real world points positioned
behind the camera in Z direction. Here we had a lot of
confusion regarding the last column in U. In the project page,
it states that this is C - the camera location vector, but what
we learned was that this is actually the translation vector - t.

C. Non-Linear Triangulation

Given 2 projection matrices, image points and matching real
world points, we wanted to minimize the projection error on
both images by optimizing the real world points. This was
done using the LM optimizer API in scipy. Our first attempt
was to optimize all of the points together but later found out
that was unnecessary. Instead we minimized the error for each
real world point, leading to much faster convergence.

VI. 3.6. PERSPECTIVE-N-POINTS

The following steps were performed while registering the
remaining images, to estimate the camera pose for them and
to further refine the world points.

A. PnP RANSAC

For a certain image to be registered, we found a previous
pose estimated image, with which it had most inlier matches,
instead of always finding inliers with the first image (assumed
to be taken from world origin). This was done so as to have
more matches to work with. For example, image 1 had no
matches with image 6 and this was causing issues. Using the
inlier matches with a pose estimated image, we could find the
2D image to 3D world point correspondences for this new
image. We then performed RANSAC to estimate a pose for
the new image using LinearPnP.



B. Linear Camera Pose Estimation

In this section, we needed to find a rotation and translation
matrix that would satisfy a set of real world points projected
to a set of image points. First we normalized the image points
to remove the effect of the camera matrix by multiplying with
the inverse of the camera matrix. Next we created a linear
solver matrix to solve for the rotation and translation.

Our attempts to enforce orthogonality on the R matrix
was found to increase the projection error. Best results were
obtained when we retrieved the R and t matrix right out
of the last row of V7. This in fact did not matter because
after the Non-Linear PnP the algorithm converged to the same
projection error.

C. NonLinear PnP

In the Non-Linear PnP we were trying to minimize the
projection error by optimizing the rotation and translation
using 3D to 2D correspondences found before. A mistake we
learned here was that we attempted to generate the projection
matrix before passing it to least_squares and optimizing that
matrix. This resulted in a camera matrix being embedded in
the projection matrix and leading to bad optimization. We
ended up passing the rotation and translation matrix to the
least square and then building the projection matrix in the
cost function where the camera matrix was taken in as an
argument, instead of being a part of the initial guess.

The reprojections of the triangulated 3D world points after
optimizing the estimated camera pose are as shown in Figure

Further, new 3D world points were triangulated for the pair
of cameras used in the above step, and were optimized using
non-linear optimization. The results are shown in Figure

VII. BUNDLE ADJUSTMENT

A. Visibility Matrix

We created a dictionary called traj where the key was a real
world point and the value was an array of tuples, imagelndex
(in our list) and the 2D image coordinates to which the real
world point was mapped. Using this dictionary, we generated
the Visibility matrix where each row is an imagelndex and
the column represented the index of the real world coordinate.
Using the traj dictionary, this was simple.

B. Bundle Adjustment

For every new addition of image to the pool, we updated
the 3D world points. This could have affected the 3D world
to 2D image mappings of other images as well, so we need to
perform bundle adjustment which basically tries to optimize
all the variables - the camera poses for all images registered
so far in each iteration, and the 3D world points - together.
Since in this case, the variables to be optimized were too
many, we had to optimize the refinement algorithm itself. We
did this by constructing a sparse jacobian matrix which tells
the optimizer function about the dependency of a particular
residual on a particular variable, so that it does not spend
time computing gradients for unrelated residuals and variables.

This sparse jacobian matrix was sent as additional input to the
scipy.least_squares optimizer.

The reprojections of the triangulated 3D world points after
bundle adjustment are as shown in Figure [3]

VIII. SURPRISES

The matches data we received was tainted with points with
one-to-many connections. In the end we removed all matches
that had repeated points in matches that had already been read
and stored.

Real world points needed to be able to change for images
that had been processed. For example if we have point A in
image 1, point B in image 2 and point C in image 3. After
processing image 1 and 2, point A and B point to a real world
point X, when image pair 2 and 3 get processed, B and C
is identified as a inlier. After PnP had been done and Linear
triangulation was done, point B and C had a real world point
P. What we did was that when B was saved with another real
world point, we moved all image points to the new real world
point. So once image 2 and 3 was finished being processed, A
now pointed to P instead of X. We believe this was the correct
approach to have more residuals per world point.

IX. RESULTS

In the table [ we show the Linear PnP and NonLinear PnP
for images 3 to 6 paired with the image with which it had most
inlier matches. Linear Triangulation and NonLinear Triangula-
tion is performed between the two images in the pair, and the
average reprojection error before and after bundle adjustment
is calculated for all images that have been processed so far.
For example, image pair 3 and 4 displays reprojection error
of all world points found in images 1 to 4.

In the end, we were able to get a good average pixel
reprojection error. We did not understand the increase in pixel
error in pairs 4/5 and 5/6 after the NonLinear PnP (bolded
in table). The least_square showed the final cost less than the
initial cost but our error went up.

REFERENCES

[1] http://cmp.felk.cvut.cz/cmp/courses/TDV/2013W/lectures/tdv-2013-07-
anot.pdf

[2] https://www.cs.utah.edu/ srikumar/cvspring2017 piles/Lecture3.pdf

[3] http://cis.upenn.edu/ cis580/Spring2016/Lectures/cis580-18-coursera-
2016-SfM-fulll.pdf

[4] http://ai.stanford.edu/ birch/projective/node20.html

[5] https://www.uio.no/studier/emner/matnat/its/UNIK4690/v16/
forelesninger/lecturer 3-pose-from-epipolar-geometry.pdf

[6] https://scipy-cookbook.readthedocs.io/items/bundleadjustment.html



Average Euclidean Pixel Projection Error

Image Pair Linear PnP | NonLinear PnP | Linear Triangulation | NonLinear Triangulation | Before BA | After BA
Image 1 and 2 n/a n/a 0.887073 0.867780 n/a n/a

Image 2 and 3 2.771641 2.500534 0.848535 0.823843 0.956535 0.269139
Image 3 and 4 1.881009 1.854282 0.331476 0.319151 0.444658 0.319146
Image 4 and 5 2.066174 2.095174 0.317244 0.298908 0.550520 0.344769
Image 5 and 6 2.553068 3.867218 0.502613 0.509479 0.599114 0.376498

TABLE I: Table showing average euclidean pixel projection error for all images




(e) Feature correspondences between images 2 and 4 (e) Feature correspondences between images 5 and 6

Fig. 1: Feature correspondences between images after Fig. 2: Feature correspondences between images after
RANSAC. Green lines show the accepted correspondences RANSAC. Green lines show the accepted correspondences
and red lines show the rejected ones. and red lines show the rejected ones.



(b) Reprojections for Images 5 and 6 after optimized PnP

Fig. 3: Reprojections after PnP step to get camera poses. Green points mark the actual image 2D points, red points are the
reprojected points after linear PnP and blue points are the reprojections after nonlinear PnP



(c) Reprojections for Images 3 and 4 with newly triangulated world points



(e) Reprojections for Images 5 and 6 with newly triangulated world points

Fig. 4: New triangulated world point reprojections, after PnP step. Green points mark the actual image 2D points, red points
are the reprojected points after linear triangulation and blue points are the reprojections after nonlinear triangulation



(c) Reprojections for Images 5 and 6

Fig. 5: Reprojections after the final bundle adjustment step, performed after all the images were registered. Green points
mark the actual image 2D points, red points are the reprojected points before bundle adjustment and blue points are the
reprojections after bundle adjustment

8




	Introduction
	Estimating Fundamental Matrix
	Essential Matrix from Fundamental Matrix
	Estimate Camera Pose from Essential Matrix
	Triangulation
	Linear Triangulation
	Cheirality Check
	Non-Linear Triangulation

	3.6. Perspective-n-points
	PnP RANSAC
	Linear Camera Pose Estimation
	NonLinear PnP

	Bundle Adjustment
	Visibility Matrix
	Bundle Adjustment

	Surprises
	Results
	References

