
CMSC733
Project 3: Structure From Motion—Traditional

Approach
Nitin Suresh

School of Electrical and
Computer Engineering

University of Maryland - College Park
UID: 113638855

Jo Shoemaker
Computational Linguistics and

Information Processing Lab
University of Maryland - College Park

UID: 115506787

Given images of a scene taken from different positions,
it is possible to estimate the real-world, three-dimensional
positions of elements in the scene. This has been called the
Structure from Motion problem. Our implementation presumes
a set of given images I taken by a camera with pre-calibrated
intrinsic matrix K, and preliminary corresponding points Mij

mapped between all images i and j. Using these values, we
are able to estimate camera poses Pi for all images in I
and positions in three-dimensional space for a subset of the
points in M . We use several techniques to refine these initial
estimates.

I. INITIAL CAMERA POSE ESTIMATION

We initially use RANSAC to estimate the inlier points
between the first two images. These correspondence points
are used to estimate the fundamental matrix by stacking
and solving x′Fx = 0. RANSAC is used along with the
fundamental matrix estimation to get the best inlier points.
Examples are shown below-

Fig. 1. Correspondence inliers detected through RANSAC between image1
and image2

Fig. 2. Correspondence inliers detected through RANSAC between image3
and image4

Fig. 3. Correspondence inliers detected through RANSAC between image5
and image6

The equation was solved by taking the SVD and using the
last column of V. The essential matrix can be estimated from
F since we are given the calibration matrix for the camera
(E = KTFK). The relative camera pose P (determined from
the rotation matrix R and the camera center translation matrix
C) can be determined from the essential matrix, keeping the
reference camera at [I0]. We get 4 candidate poses, and their
corresponding points.

II. INITIAL 3D POSITION ESTIMATION

To obtain the correct pose and 3D positions of the points,
we perform the cheirality check. For this we check whether
r3(X − C) > 0 and additionally whether [001]TX . An
interesting point to note here was that if we added an ad-
ditional constraint here that checked the residuals as well, this
improved accuracy. The best pose out of the 4 candidates is the
one that satisfies these conditions for the maximum number
of points. Nonlinear optimization of the points is carried out
by optimizing on the reprojection error. Figure below shows
the linearly and non-linearly triangulated points.

III. ADDITIONAL CAMERA POSE ESTIMATIONS

Once we have a fairly reliable set of 3D and image point
correspondences to work with, we estimate each additional
image’s camera poses.

A. Perspective-N-Point solution and RANSAC

Once an initial set of 3D points Xi is corresponded with
image points xi for image i, we algebraically solve for Pi in



Step Mean Reprojection Error

Img3 Img4 Img5 Img6

PnPRANSAC 2e37 1e37 3e37 7e37
Nonlinear PnP 303013686 41602560 139605 1312681

Linear Triangulation 70495458 1766038 3937977 1389664
Nonlinear Triangulation 314887 1200472 41541 14596

TABLE I
MEAN REPROJECTION ERROR AFTER EACH REFINEMENT STEP

LinearPnP.py. Using six pairs of points Si and si sampled
from Xi and xi, we solve the system

ST
i [Ri, ti]

T
= (Ksi)

T

for [R, t]
T . We negate R if its determinant is −1. Then we

find Ci by multiplying ti by the transpose of Ri. With these
components it is trivial to find Pi.

Because our data is noisy, we refine our initial estimate of Pi

using the RANSAC algorithm to minimize reprojection error.
For each image’s P estimate, we run PnPRANSAC.py for
2,000 iterations with a tolerable reprojection error of 500, 000.
This does not remove outliers from our Xi and xi point
correspondences.

B. Refining Camera Pose with NonlinearPnP.py

Using scipy.optimize.leastsq, we optimize our Pi

to minimize reprojection error for all points in Xi. Table I
displays mean reprojection error for each of images 3-6 after
optimizing P . These values are extremely high, but they
represent a significant improvement over the error values after
PnPRANSAC.py.

Once this optimization has gotten our Pi as certain as it can
be, the Xi values are further refined by linear and nonlinear
triangulation as described for the first image pair. Figure 4
shows the camera position and 3D point estimates after these
steps.

IV. BUNDLE ADJUSTMENT

We use python-sba [1] to perform Sparse Bundle Ad-
justment to optimize all 3D point estimates X and all camera
poses P at once.

REFERENCES

[1] THERIAULT, D., FULLER, N., JACKSON, B., BLUHM, E., EVANGE-
LISTA, D., WU, Z., BETKE, M., AND HEDRICK, T. A protocol and
calibration method for accurate multi-camera field videography. J exp
Biol 217 (2014), 1843–1848.



Fig. 4. Linear and Nonlinear Triangulation 3D point and camera pose estimates for Images 1,3,4,5, and 6


