
CMSC733: Project 3 - Buildings built in minutes:
An Sfm Approach

Khoi Viet Pham - Gnyana Teja Samudrala
Email: khoi@terpmail.umd.edu - sgteja@terpmail.umd.edu

Use 1 late day (submitted at 2AM).

I. INTRODUCTION

The project is about reconstructing a whole 3D scene from
a set of images taken by a camera at different locations and
poses. The problem here is often referred as Structure from
Motion (SfM). In this report, we will breifly explain each step
in the pipeline along with the problems we encounter. The
whole pipeline is as follows:

1) Feature matching and outlier rejection using RANSAC
and fundamental matrix.

2) Estimate fundamental matrix between two initial views.
3) Estimate essential matrix from the fundamental matrix.
4) Estimate camera pose from the above essential matrix.
5) Camera pose disambiguation to find the correct camera

pose of the 2nd view.
6) Nonlinear triangulation to refine the values of the trian-

gulated points.
7) Perspective-n-Point to register new image, new points,

new camera pose into the system.
8) Bundle adjustment for final optimization of the whole

reconstructed scene and camera poses.

II. REPORT

A. Feature matching & outlier rejection using RANSAC and
fundamental matrix

The first step in the pipeline is to figure out the correspon-
dences between every pair of images. Luckily, we are already
provided with the matching data in the Data folder. Since these
feature matchings were found by some feature descriptors, the
data tends to be noisy and contains outliers. Therefore, we will
remove the outliers using RANSAC along with the help of the
fundamental matrix.

Given a pair of images along with their noisy corre-
spondences, we use RANSAC with the 8-point algorithm to
estimate the fundamental matrix between them. This works by
randomply sampling 8 correspondences, then we estimate the
fundamental matrix F , count the number of correspondences
that satisfy the epipolar constraint (i.e. x′TFx ≈ 0 by using
a small threshold value), then select the fundamental matrix
that results in the largest number of inliners and reject the
remaining correspondences. One note is that we have to
enforce the computed fundamental matrix to be rank 2 per
the project instruction.

Example of outlier rejection using RANSAC with the fun-
damental matrix is shown in figure 1.

Fig. 1. Example of feature matching and outlier rejection using RANSAC
with fundamental matrix: (above) before outlier rejection (below) after outlier
rejection.

B. Estimate fundamental matrix between 2 initial views

We select image 1 and 2 as our two initial views for our
scene reconstruction. From the previous step, we already got
the fundamental matrix between these two views.

C. Estimate essential matrix from the fundamental matrix

Estimating the essential matrix is straightforward as we only
need to use the formula E = KTFK where K is the camera
intrinsic matrix. We also follow the trick per the instruction
to correct E so that it has singular values (1, 1, 0). We also
make sure to test our computed essential matrix by using it for
outlier rejection in step 1, which also produces similar resuts
as in figure 1.

D. Estimate camera pose from the essential matrix

From the essential matrix, there are 4 possible solutions for
the camera location and rotation (aka. camera pose) of the
camera in image 2. Here, we already assume that the world
coordinate system aligns with the coordinate system of the first
camera, i.e. C1 = [0, 0, 0]T , R1 = I(3). Having 4 possible
solutions is not bad because it’s possible to use the Cheirality
condition with 3D point triangulation to figure out the correct
camera pose for image 2’s camera in the next step.



E. Camera pose disambiguation to find correct camera pose
for 2nd image

For each possible camera pose (C2, R2), we can use it with
(C1, R1) (which aligns with the world coordinate system) to
triangulate the 3D location of all correspondences between the
two initial views. For each triangulation solutions X , we check
if all triangulated points lie in front of both two cameras 1 and
2 by checking if r3(X − C2) > 0 (lie before camera 2) and
[0, 0, 1]TX > 0 (lie before camera 1). We present our initial
triangulation plot with 4 camera poses in figure 1, and our
correct triangulation plot after disambiguation in figure 2.

Fig. 2. (Left) Initial triangulation plot with 4 camera poses (Right) The correct
triangulation plot after disambiguation. These plots are from top-view and are
calculated from image pair 1 and 2.

F. Nonlinear triangulation to refine the triangulated points

Now that we got the camera pose for the 2nd camera as
well as the linearly triangulated points X from the previous
step, we can apply a nonlinear optimization function to refine
X such that we can minimize the reprojection error. We
use the function scipy.optimize.least squares to minimize the
following reprojection error:

min
x

∑
j=1,2

(
uj − P jT

1 X̃

P jT
3 X̃

)2
+
(
vj − P jT

2 X̃

P jT
3 X̃

)2

We present the results in figure 3.

Fig. 3. Result after nonlinear triangulation: blue dots are results of nonlinear
triangulation, red x’s are results of linear triangulation. These plots are from
top-view and are calculated from image pair 1 and 2.

G. Perspective-n-Points (PnP)

We have the world points in 3D(X) and their corresponding
image points in 2D(x), using this correspondance we can
calculate the rotation and translation of the camera in the world
i.e 6 DOF pose of the camera. We first estimate the pose of the
camera with linear least squares solution and make it robust by
using RANSAC algorithm. This result from RANSAC is used
as the initial estimate for the Non linear method. The steps are
detailed below with plots for comparision and understanding
the use of each method.

1) Linear PnP: The inputs to this are the image points(x),
world points(X) and also the intrinsic parameters of the
camera(K). At first the inverse of the intrinsic parameter
matrix is calculated to normalise the image points. Then we
get the equation 1 into the form Ax = 0 to solve it using
linear least squares solution with SVD.uv

1

 =

P1

P2

P3

 [X] (1)

where P = R
[
I3×3 −C

]
We manipulate this to arrive at, 01×4 −XT vXT

XT 01×4 −uXT

−vXT uXT 01×4

PT
1

PT
2

PT
3

 = 0

By doing SVD, the last column of V gives the solution
to the equation. From this we extract the rotation matrix
(R)and the 4th column will be the translation vector(T ). The
rotation matrix will not be orthogonal to make sure of which
we decompose R = USV T and can get orthogonal R as
R = UV T . Also we check for the sign of the determinent and
make it positive if not by negating both R and T . The centre
is obtained by C = −RTT .



TABLE I
TABLE OF REPROJECTION ERRORS AFTER CORRESPONDING STEPS

Pairs LinTri NonLinTri LinPnP NonLinPnP BundleAdjustment

1 2 2.86549 2.82840 – – –

1 3 15.8999 15.57019 486181.167 43.2251 1.47299

1 4 30.4351 30.3962 200705.659 915.263 1.6456

3 5 6943.411 5346.143 17552064.40 31231.23922 11.5858

3 6 151.6227 141.8786 210636.399 7.4827 6.6519

2) PnP RANSAC: We use this to remove the outliers and
get a better result of the initial linear estimate. This is run
for a maximum of 1000 iterations and the threshold of the
reprojection error for a point to be inlier is set to be 10. The
formula used for calculating the reprojection error is

e =

(
u− PT

1 X̃

PT
3 X̃

)2

+

(
v − PT

2 X̃

PT
3 X̃

)2

3) Nonlinear PnP: We made use of the Nonlinear least
squares solver from scipy to solve for optimal pose of the
camera. The initial estimate for the solver is given from the
values obtained by above method RANSAC PnP. In this to
maintain the orthogonal condition of the rotation matrix we use
quaternion as the input parameter for the solver. The equation
to be minimized is

min
C,q

∑
i=1,J

(
uj − PT

1 X̃j

PT
3 X̃j

)2

+

(
vj − P iT

2 X̃j

P iT
3 Xj

)

H. Bundle Adjustment

We didnot use the visibility matrix for bundle adjustment,
instead created a dictionary for each image which has tuple
pairs with 2D image point and index to the corresponding 3D
point. Most of the part and logic of implementation is adapted
from [?] large scale bundle adjustment for scipy. In this the
error we try to minimize is

min
{Ci,qi}ii=1,{X}Jj=1

I∑
i=1

J∑
j=1

(uj − P jT
1 X̃

P jT
3 X̃

)2

+

(
vj − P jT

2 X̃

P jT
3 X̃

)2


The parameters to be optimized are given as a single 1D array.
In this the first N(N = no.ofcameras ∗ 7) variables are
camera poses and the later are the 3D points. Each camera
pose is represented as 7 variables which are rotation matrix in
quaternion form (qw, qx, qy, qz) and centre position of camera
(Cx, Cy, Cz). Two 1D arrays for all the possible observations
are made of camera and point indices which maps the right
3D point with the camera pose. Also the 2D image points are
ordered in the same fashion. And the norm between calculated
and ground truth image points is minimized by the optimizer.

Following are our results after each step of bundle adjust-
ment.

Fig. 4. Bundle adjustment result after adding pair (image 1, image 3). Camera
1, 2, 3 have color yellow, green, red respectively.

Fig. 5. Bundle adjustment result after adding pair (image 1, image 4). Camera
1, 2, 3, 4 have color yellow, green, red, blue respectively.



Fig. 6. Bundle adjustment result after adding pair (image 3, image 5). Camera
1, 2, 3, 4, 5 have color yellow, green, red, blue, black respectively.

Fig. 7. Bundle adjustment result after adding pair (image 3, image 6). Camera
1, 2, 3, 4, 5, 6 have color yellow, green, red, blue, black, purple respectively.
Notice that camera 6 is weirdly plotted, this is because the reprojection error
after nonlinear PnP is too high and our estimated pose for camera 6 is not
good enough.

I. VSFM

Following are the results we got from VSFM (figure 8 and
figure 9). We remove points that are too far away for better
visualization.

Fig. 8. VSFM: before bundle adjustment.

Fig. 9. VSFM: after bundle adjustment.


