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Abstract—In this work, reconstruction of a 3D scene and
simultaneous estimation of the camera poses of a monocular
camera is studied. We explore the concepts of Structure from
Motion (SfM) to create the entire rigid structure from a set of
images with different view points.

1. FEATURE MATCHING

A. Feature Detection

Fig. 1. Input Images

The first step towards feature matching is to understand
how the two images are related geometrically. To do this,
we first extract feature points that can be tracked from one
image to other. We use SIFT feature points and show that
these are tracked well across images. SIFT feature detector
can be created in OpenCV[1] by using

Since we have the SIFT descriptors for each feature de-
tected in both the images, we can compute feature matches
between the two image by using the OpenCV function
cv2.BFMatcher(). Since we only are concerned about the best
pair matches, we use the function bf.knnMatch() with k=2. We
further improve the quality of matches by using a ratio test
with the ratio of te first best match and the second mathc to
be less than a threshold of 0.8.

Now we have matches between the two images but all these
matches are not correct matches. There are still some outliers
which we need to process out.
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Fig. 2. Feature Matching with RANSAC

II. THE FUNDAMENTAL MATRIX F

The F matrix is an algebraic representation of epipolar
geometry. One important property of the Fundamental Matrix
is that described in Equation 1. This is known as the epipolar
constraint or the correspondence condition.
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Since F is a 323 matrix, we get a homogeneous linear
system with 9 unknowns. To solve this system of equation, we
need at least 8 point correspondences between two images.

To solve for F we cast the system into the format Ax=0
whose solution is the smallest eigen-vector of A reshaped into
a 3z3 matrix. But another property of the Fundamental Matrix
is that its rank is equal to 2. So it is necessary to set the third
eigen value of F matrix to 0.

III. OUTLIER REJECTION FOR BEST F' VIA RANSAC

Since the point correspondences are computed using SIFT
feature descriptors, the data is bound to be noisy and contains
several outliers as discussed in the previous section. Thus, to
remove these outliers, we use RANSAC algorithm for a better
estimate of the fundamental matrix

IV. ESTIMATING ESSENTIAL MATRIX FROM
FUNDAMENTAL MATRIX

After obtaining the best estimate for the Fundamental Ma-
trix from the matching features in the two images, we need
to compute the Essential Matrix E. The E matrix is related to



F matrix by E = K TFK, where K is the camera calibration
matrix.

The rank of the Essential Matrix E is 2 but due to the noise
present in K this is not the case in the obtained estimate.
Hence, the rank of the Essential Matrix E is forced to 2 by
setting the third eigen value of E to 0.

V. ESTIMATE CAMERA POSE FROM ESSENTIAL MATRIX

Once we have obtained the Essential Matrix, we have to
compute the camera pose which consists of 6 degrees-of-
freedom (DOF).

The four camera pose configurations we get are:

) C,=U(3);R =UWVT

2) CQ = *U(Z,3);R1 = UWVT

3) Cg = U(Z,3);R1 = UWTVT

4) Cy=-U(:,3); Ry =UWTVT

0 -1 0
where W= |1 0 0| and E=UDVT.
0 0 1
After this step, we need to make sure that det(R)! = —1. If

this is not the case, then we need to correct the camera pose
by setting R=—R and C = —-C

VI. TRIANGULATION CHECK FOR CHEIRALITY
CONDITION

Given four camera poses, we need to identify which one of
those is the correct camera pose. To do this, the first step is
to triangulate 3D points using linear least squares.

To remove the disambiguity of identifying the correct cam-
era pose, we check the cheirality condition i.e. the recon-
structed points must be in front of the camera. A 3D point
X is in front of the camera iff 73(X — C) > 0 where r3 is the
third row of the rotation matrix. Not all triangulated points
satisfy this condition due of the presence of correspondence
noise. The best camera configuration, (C,R,X) is the one
that produces the maximum number of points satisfying the
cheirality condition.

VII. NON-LINEAR TRIANGULATION

We computed the 3D points using Linear Triangulation
but this estimate can be refined. Given, the initial estimate
of the 3D point X and the pixel coordinate, minimizing
the reprojection error (computed by measuring error between
measurement and projected 3D point) will provide a better
estimate of the world point. It is done by the Equation ??.
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where j is the index of each camera/successive image and
X is the homogeneous representation of X. This minimization
problem was optimized by using scipy.optimize.least_squares
function in Scipy library.
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Fig. 3. Initial Triangulation with dis ambiguity for 4 camera poses.
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Fig. 4. Linear Triangulation selecting the correct camera pose.
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Fig. 5. Non-Linear Triangulation
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Fig. 6. Linear and Non-Linear Triangulation

VIII. LINEAR PERSPECTIVE-N -POINTS

We now have a a set of n 3D points in the world, their 2D
projections in the image and the intrinsic parameters. Wlth
this the 6 DOF camera pose can be estimated using linear
least squares. We need at least 6 point correspondences so
as to get a unique solution. Given world points X and image
points X, the 2D image points are normalized using the camera
intrinsic matrix and the linear least squares system is solved
for translation (t) and rotation (R) where t = —RTC. The
orthogonality of the rotation matrix is not enforced by the least
squares solution, so it must be corrected. Also, rotation matrix
should be corrected if the the determinant of the rotation
matrix R = -1.

To get a robust estimate of the 6 DOF pose, RANSAC is
used to overcome the errors involved.

IX. NONLINEAR PNP

With the 3D-2D correspondences, and the linearly estimated
camera pose. We can refine the pose that minimizes reprojec-
tion error given by the optimization in Equation 3
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_ where j is the index of each camera/successive image and
X is the homogeneous representation of X. This minimization
problem was optimized by using scipy.optimize.least_squares

function in Scipy library.

X. BUNDLE ADJUSTMENT

The first step to bundle adjustment is to create the visibility
matrix which is a I x J matrix, V where V;; is one if the jth
point is visible from the i*" camera and zero otherwise.

Bundle adjustment is an optimization problem to refine
both the initialized camera poses as well as the 3D points
by minimizing a reprojection error function with the visibility
matrix in it.
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Fig. 7. Camera poses and scene reconstruction after PnP algorithm.
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Fig. 8. Scene reconstructed in 3D

XI. V-SFM

We used V-SFM to compare our outputs. The reconstruction
and camera poses generated can be seen in Fig. 9 and Fig.
10. We see that the outputs generated by V-SFM are much
more accurate and represents the structure reconstructed more
faithfully.
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Fig. 9. VSFM front view

Fig. 10. VSFM Top View



