
CMSC733 Project 4
Sigurthor Bjorgvinsson

School of Computer Science
University of Maryland, College Park

Email: Sigurthor.Bjorgvinsson@gmail.com

Ameya Patil
School of Computer Science

University of Maryland, College Park
Email: ameyap@cs.umd.edu

Jack Rasiel
School of Computer Science

University of Maryland, College Park
Email: jrasiel@cs.umd.edu

I. OVERVIEW

In this project we explored an unsupervised deep learning
approach to retrieve depth and Ego-Motion from motion. We
started with the code published with [1] and tried to improve it.
To improve it we implemented augmentations to get better use
from the provided small training dataset. We added new loss
components derived from the literature we reviewed. We tested
each change on its own and later tested combined changes.
This is our story:

II. METHODS

A. Data Augmentation

Here we discuss what augmentations we applied to the data.
If the augmentations were turned on, there was a default 50%
chance of the augmentation being applied to the batch.

1) Color Changes: Inspired by [2], we implemented
gamma, brightness and color shift. The gamma was imple-
mented so that every channel in the batch put into the power
of a random value [0.5, 1.5). The brightness factor was also
the same over the channels where each channel was multiplied
by [0.5, 2.0). The color shift was different for each channel
for the purpose of training the new loss components than only
the photometric loss.

2) Gaussian Noise: We implemented Gaussian noise where
we generated random values in the range [−0.02, 0.02] (im-
age values ranged from [0, 1]). We used a truncated normal
distribution with standard deviation of 0.01 and a mean of 0
to generate these random values which we then added to the
image. We made sure to clip the values afterwards to only
have values [0, 1].

3) Flips and Rotation: We saw flips, both vertical and
horizontal, be a great simple way to include more diversity
in our training data. In addition to flips, we implemented
rotation. Because of the high aspect ratio of the input images,
using a static scaler to fit all rotations would need to be
little more than 3.4. To us, this defeated the purpose of this
augmentation because of how much information we would
loose from each image. Instead, after randomly picking a angle
between 0− 360 deg, we calculated the scale we would need
to apply to the image so that our center crop would have no
black background.

B. Loss Function

Here, we explain the various components of our loss func-
tion.

The loss function in SfM-Learner ([1]) includes 3 compo-
nents: a pixel loss, a smoothness loss, and an explainability
loss. In our system, we exclude the explainability loss, as it
was found in [1] to have little impact on performance (indeed,
Zhou et al. disabled it in later revisions of their code).

1) Photometric Loss: The photometric loss (or pixel loss)
measures the high-level (low frequency components) similarity
of the target and warped source images. [1] uses a simple L1
norm for their photometric loss. This loss helps ensure a good
match of the low frequency components in the two images.
However, L1 loss may introduce blur in the images, because
it minimizes the aggregate of individual pixel-level differences
irrespective of whether they belong to edges or not.

Our pixel loss is a weighted sum of an L1 loss (from [1]),
and an advanced photometric loss SSIM, from [2].

L = α

(
1− SSIM(It, Îs)

2

)
+ (1− α)||It − Îs||1

We added a structural similarity metric (SSIM) to this
loss, as was done in [2]. This performs the same function as the
L1 loss, but is more efficient in doing so because it measures
differences in the structure of the image as perceived by
humans, and not pixel level differences [3]. The SSIM metric
has separate components for luminance masking, contrast
masking, and image structure, which are computed using the
mean, variance and covariance of pixel values in distinct image
sub-patches. Measuring within small patches helps preserve
the image’s high-level structure better.

2) Smoothness Loss: In SfM-Learner, the smoothness loss
is simply the second order derivative of the predicted depth
image. This is equivalent to removing the rapid variations of
intensity in the image and keeping only the slow variations.

The smoothness loss as implemented in [2] is edge-aware.
It uses a dot product between the gradients of the depth image,
and exponential inverse of the gradients of the actual image:
a weighted sum of the depth image gradients.

L =
∑

pixels p

|∇D(p)|.(e−|∇I(p)|)T

If an image region is smooth, the weight is identity (no
change); if the region has high intensity variations, the weight
is less than 1 (low weight). This lowers the contribution to
loss from depth image gradients, in regions where the actual
image gradients are also high, and keeps the loss contribution

from depth image gradients, in smooth regions in the actual
image, intact.

Intuitively: the regions of the image with highly varying
colors are more likely to have objects in them at varying
depth– and thus are expected to have high depth gradients. So,
these regions need not be penalized, and thus their contribution
to the loss is lowered.

3) Image Gradient loss: We also incorporated another loss
from LEGO [4] which is simply the L1 difference between
the image gradients of the target image and the inverse warped
source image.

L =
∑

pixels p

||∇It(p)−∇Îs(p)||1

This loss further aids in the reconstruction loss, helping to
maintain a high level match of the two images.

4) Depth-Normal consistency smoothness loss: LEGO [4]
also implemented a depth to normal and normal to depth
consistency loss. This basically tries to derive one from the
other. They further applied the smoothness loss on both the
predicted depth from normal and the predicted normal from
depth too. The original Sfm Learner was not implemented
to predict normals, but the LEGO implementation helped in
improving the accuracy for depth map, so we incorporated
the depth2normal and normal2depth layers and applied the
smoothness losses to both of them.

5) Edge loss: LEGO [4] implemented one more loss called
the edge loss which is specifically for computing edges along
with the depth and normals. This involved adding an entirely
new network - edgeNet to the existing Sfm learner. However,
since edges are not needed for camera pose estimation, we did
not incorporate the edgeNet in our code.

C. Training

Our training hyperparameters are unchanged from SfM-
Learner. We trained for 20000 iterations total, with 64 epochs,
and a batch size of 4. Each training session took about 4.5
hours on a PC with an RTX2080 and i7-8700K. We saved
models periodically during training, and saved the model with
the lowest training loss.

For an example of training loss, see II-C. SfM-Learner
and GeoNet losses arent directly comparable because the
additional term in the Geonet increases its baseline value.
Notice also that adding augmentations makes training noisier
and increases loss, but ultimately yields better performance (as
shown in the Results section).

III. RESULTS

We conducted a wide range of experiments, with varying
loss functions and data augmentations.

A. Performance

We ran a series of ablation tests to demonstrate how each
modification effects performance. For a full comparison of
performance accross all experiments, see table V.

B. Overall Performance

The best performance was achieved with Geonet loss and
Color augmentation (applied to 100% of training images). See
III and II for the full metrics.

Overall, we achieved a 1% improvement over the default
SfM-Learner. Perhaps more impressively, the highest accuracy
category jumped by over 10%. Pose performance was identi-
cal.

C. Analysis: Data Augmentation

Table I shows results for the effect of different augmen-
tations on final performance. Our rotation-and-cropping aug-
mentation markedly decreased performance. We attribute this
to the significant difference in appearance that this causes to
the training images.

The other forms of augmentation uniformly increased per-
formance. Increasing the rate of augmentation (from 50%
of training images to 100%) improved performance. Note,
however, that adding together multiple augmentations (e.g.
color + flipping + gaussian) caused a drop in performance,
even if each augmentation boosted performance on its own.

D. Output Comparison and Analysis

1) High and low-error examples:: in the supplement, we
show three of the best-performing images, and three of the
worst (measured by absolute relative error). As we can see, and
as we might intuit, easier scenes are those with even lighting
and an open road, and those which are of typical scenarios
in the dataset. The best-performing images also tend to have
cars towards the edge of the image, rather than in the middle.
Harder scenes tend to be more crowded, especially cities with
more pedestrians, or have varied lighting, or are of atypical
scenarios (e.g. the scene in the third row).

2) Examples Relevant to Data Augmentation: also in the
supplement, we show examples where one augmentation per-
forms much better than another. In the first example, the color-
augmented model does a much better job reconstructing the
tree and pole. We could understand this as being because it
is better at distinguishing image features in the low-contrast
shadows. The middle two examples show where vertical and

TABLE I
DATA AUGMENTATION. Performance effect of various augmentations. All experiments were on SfM-Learner with Geonet loss. All augmentations applied

with probability .5, except where otherwise noted.

ERROR (lower is better) ACCURACY (higher is better)
Augmentation abs rel sq rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Color (p=1) 0.1815 1.573 6.6459 0.2694 0 0.7361 0.9043 0.9599
Flip 0.1831 1.589 6.376 0.2681 0 0.7346 0.9025 0.9585

Color 0.1848 1.7828 6.5579 0.2687 0 0.7406 0.9083 0.961
Gauss 0.1906 1.8348 6.5245 0.2691 0 0.7402 0.9053 0.9597
None 0.1946 2.4433 6.8793 0.2818 0 0.7401 0.9025 0.9561
All 0.3825 4.4081 11.4417 0.5372 0 0.3553 0.6335 0.8019

Rotation 0.4429 4.7569 12.0832 0.5876 0 0.3033 0.5608 0.7662

TABLE II
RESULTS - ACC. Depth performance on the KITTI test dataset, trained on the P4 training data. Legend: SfM-Learner - the original network. Geonet:

without augmentations. Geonet+Aug.: With color augmentations (100% rate).

Exp. ERROR (lower is better) ACCURACY (higher is better)
abs rel sq rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

SfM-Learner 0.2584 4.0676 8.0707 0.3356 0.6515 0.8635 0.9356
Geonet (No aug.) 0.194 2.443 6.879 0.281 0.740 0.902 0.956
Geonet + Aug. 0.181 1.57 6.645 0.269 0.736 0.904 0.9599

TABLE III
RESULTS - ACC. Pose performance on the P4 test sequences, trained on the P4 training data. Legend: SfM-Learner - the original network. Geonet: without

augmentations. Geonet+Aug.: With color augmentations (100% rate).

Exp. Sequence 09 Sequence 10

ATE Mean ATE Std. ATE Mean ATE Std.
SfM-Learner 0.018 0.006 0.01 0.0085

Geonet (No aug.) 0.019 0.006 0.014 0.0089
Geonet + Aug. 0.018 0.006 0.014 0.008

TABLE IV
LOSS FUNCTIONS. (Without additional data Augmentations.) Legend: Exp. - Experiment . G. - Geonet loss. L - Lego loss.

Exp. Loss ERROR (lower is better) ACCURACY (higher is better)
G L abs rel sq rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

8 1 1 0.4429 4.7569 12.0832 0.5876 0.3033 0.5608 0.7662

horizontal flipping improved performance. The last example
shows a degenerate case for the full-rate color augmentation.

E. Comparison images and 3D Reconstruction
Figure III-E shows a reconstruction of a novel scene, very

unlike the testing dataset. Fig III-E shows the corresponding
depth map. As we can see, the model does a reasonable job of
reconstructing the basic structure of the orignal scene (shown
in III-E).

F. Challenges and Future Work
Performance using the LEGO ([4]) loss is given in table V.

We were unable to make this loss converge to a useful value.
Further refinement is left as future work.

We would also like to further investigate the effect of
augmentations on training performance.

REFERENCES

[1] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning
of depth and ego-motion from video,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1851–1858,
2017.

Fig. 1. here’s a figure

[2] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in Proceedings of the IEEE Conference on

TABLE V
RESULTS OF ALL EXPERIMENTS. Legend: Exp. - Experiment . G. - Geonet loss. L - Lego loss, C - Color augmentation, R - Rotation, F - Horizontal and

Vertical flipping, G - Gaussian augmentation.

Exp. Loss Data Aug. ERROR (lower is better) ACCURACY (higher is better)
G L C R F G abs rel sq rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

1 0 0 0 0 0 0 0.2584 4.0676 8.0707 0.3356 0.6515 0.8635 0.9356
2 0 0 1 0 0 0 0.4429 4.7571 12.0832 0.5876 0.3033 0.5607 0.7662
3 1 0 0 0 0 0 0.1946 2.4433 6.8793 0.2818 0.7401 0.9025 0.9561
8 1 1 0 0 0 0 0.4429 4.7569 12.0832 0.5876 0.3033 0.5608 0.7662
9 1 0 1 1 1 1 0.3825 4.4081 11.4417 0.5372 0.3553 0.6335 0.8019

10 1 1 1 1 1 1 0.4429 4.7569 12.0832 0.5876 0.3033 0.5608 0.7662
11 0 0 1 1 1 1 0.4962 5.8093 11.947 0.6358 0.2732 0.5133 0.7041
12 1 0 0 1 0 0 0.4429 4.7569 12.0832 0.5876 0.3033 0.5608 0.7662
13 1 1 0 0 0 0 0.4429 4.7569 12.0832 0.5876 0.3033 0.5608 0.7662
14 1 0 0 0 0 1 0.1906 1.8348 6.5245 0.2691 0.7402 0.9053 0.9597
15 1 0 1 0 0 0 0.1848 1.7828 6.5579 0.2687 0.7406 0.9083 0.961
16 1 0 0 0 1 0 0.1831 1.589 6.376 0.2681 0.7346 0.9025 0.9585
17 1 0 1 0 0 0 0.1815 1.573 6.6459 0.2694 0.7361 0.9043 0.9599

TABLE VI
RESULTS OF ALL EXPERIMENTS (POSE) - ACC.

Exp. Loss Data Aug. Sequence 09 Sequence 10
G L C R F G ATE Mean ATE Std. ATE Mean ATE Std.

1 0 0 0 0 0 0 0.0181 0.0064 0.014 0.0085
2 0 0 1 0 0 0 0.6707 0.152 0.4699 0.2065
3 1 0 0 0 0 0 0.0191 0.0062 0.0146 0.0089
8 1 1 0 0 0 0 0.6795 0.1562 0.4693 0.2017
9 1 0 1 1 1 1 0.4795 0.1319 0.3791 0.1608

10 1 1 1 1 1 1 0.0878 0.0443 0.0522 0.0347
11 0 0 1 1 1 1 0.1777 0.0988 0.1461 0.0958
12 1 0 0 1 0 0 0.6741 0.1483 0.4657 0.1961
13 1 1 0 0 0 0 0.6597 0.1528 0.4515 0.1968
14 1 0 0 0 0 1 0.0194 0.0067 0.0148 0.0094
15 1 0 1 0 0 0 0.0181 0.0063 0.0142 0.0089
16 1 0 0 0 1 0 0.0271 0.0163 0.0211 0.0141
17 1 0 1 0 0 0 0.0182 0.0063 0.0146 0.0092
18 1 0 1 0 1 0 0.0607 0.0342 0.0421 0.031
19 1 0 1 0 1 1 0.0561 0.0307 0.0384 0.028

Fig. 2. here’s a figure

Computer Vision and Pattern Recognition, pp. 1983–1992, 2018.
[3] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE Trans.
Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[4] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “Lego: Learning edge
with geometry all at once by watching videos,” in Proceedings of the

Fig. 3. here’s a figure

IEEE Conference on Computer Vision and Pattern Recognition, pp. 225–
234, 2018.

Color augmentation > flipping:

Flipping augmentation > color:

Degenerate case for color:

Highest-error examples:

Supplement: Example Output

Lowest-error examples:

GT Color Aug (100%) Color Aug (50%) Vert+Hor Flip (50%)

GT Color Aug (100%) Color Aug (50%) Vert+Hor Flip (50%)

