
Learning the Structure from Motion, An
Unsupervised Approach

Abhishek Kathpal
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: akathpal@umd.edu

Darshan Shah
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: dshah003@umd.edu

Mayank Pathak
M. Eng Robotics

University of Maryland
College Park, Maryland 20740

Email: pathak10@umd.edu

I. INTRODUCTION

Until now, we have worked towards creating structure from
motion using traditional methods which involved computing
camera pose and scene depth from multiple images of a given
scene. From the results it was apparent that the results created
sparse output even after intense computation. There has been
a lot of work done recently towards solving the structure from
motion problem using Deep learning methods.

In this project we explore one such paper Unsupervised
Learning of Depth and Ego-Motion from Video [6] and try to
improvise the network with the goal of improving the accuracy
more than that cited in the original paper. [6].

While studying the paper and exploring various possibilities,
we tried to improve the network by several techniques. Few
of which worked and few did not. In this report, we shall be
addressing each of these things and finally compare our results
with the ground truth and the results of the original paper.

II. THE SFM-LEARNER NETWORK

The SfMLearner Network as described in [6] tries to predict
the likely camera motion (Ego-motion) and scene structure and
trains itself without supervision (Labelled data) by minimizing
the loss function so as to get the predictions as close as
possible to the ground truth. The network can be trained
using sequence of images with no labeling or camera motion
information.

The network consists of two different networks, each ded-
icated to training Depth and Pose respectively. The Depth
network is realized using DispNet [1] which is an Encoder -
Decoder based architecture with ReLU as activation function
after each convolution network and sigmoid as prediction
layer. The Depth Network takes one image frame as input
and generates a depth map as output. On the other hand, Pose
Network takes target view as an input which is concatenated
with source views. The network synthesizes target image from
multiple source images and outputs the relative camera poses.
The output of both the networks are then used to inverse
warp the source views to reconstruct target views and the
photometric reconstruction loss is used for training the CNNs.
Figure 1 shows the block diagram of SfMLearner network
architecture.

Fig. 1: Network Architecture of SfMLearner

The SfMLearner makes certain assumptions about the video
feed. 1. Scenes are mostly rigid i.e. scene appearance across
different frames is dominated by the camera motion. 2. There
are no occlusion/dis-occlusions in the scene. 3. The surfaces
in the scene are considered to be non-Lambertian surfaces.
To improve the robustness of the learning pipeline to these
factors, an additional network named ’explainability prediction
network’ is trained that outputs a per-pixel soft mask Es for
each target source pair. Based on this predicted Es the view
synthesis objective is weighted correspondingly.

This in a nutshell, summarizes the structure of the SfM-
Learner network. As cited by [6] and verified by running
the code on our systems, the network tends to converge after
about 180K iterations. For this project, we restrict ourselves
with training and testing on KITTI dataset. Table ?? tabulates
the results obtained by the original SfM-learner and our
modification of SfMLearner.

In the following sections, we shall discuss some of the mod-
ifications we’ve made in an attempt to improve the prediction
of the Network.

III. NETWORK IMPROVISATIONS

A. Depth Estimation from Multiple views

The SfM-Learner takes just a single target view as input
to compute depth map from the network and outputs a depth
map. Instead, we implemented the network to take both target
and source views as input. Doing so, provided a sharper depth
map image and the network also tends to converge with lesser



(a) Reference Image

(b) Depth prediction of SfMLearner

(c) Depth prediction of modified method

Fig. 2: Depth output comparision between original, our output
and ground truth

iterations than the single view implementation. The multiple
frames given as input are nothing but the image sequences of
the continuous video stream. For every target t image, we also
input successive frames t+ 1 and t− 1 this accounts for and
eliminates noises induced in depth map due to various factors.
The multiple views leverages the relationship between pixels
over multiple views to calculate depth (instead of relying on
learned semantics) and help reinforcing the depth estimates
and provides a depth prior for better depth map creation.
Figure ?? shows the depth map output of single view and
multi-view inputs.

B. Structural Similarity Loss

SfM-Learner relies on minimization of photometric loss for
training it’s network. While the photometric loss gives pretty
good results, it makes certain assumptions such as scenes
requiring to have a constant brightness, luminosity and so
forth. This constraint does not necessarily hold true in all
cases. To address this problem we explore an different kind
of metric Structural similarity Index (SSIM) as described in
[4]. The Luminance of surface of an object is a product of

(a) SfMLearner

(b) Our output

Fig. 3: Total loss comparison

illumination and reflectance, but the structure of an object are
independent of illumination. SSIM provides a robust metric
for measuring perpetual differences between two images by
considering the 3 factors of luminance, contrast and structure.
We added the SSIM loss term to the final loss. Since Structural
similarity index is usually maximized (with the maximum
value being 1), we minimize the below function

Lssim =
∑
s

1− SSIM(It, Is)

2
(1)

C. Adaptive learning Rate

The Original SfMlearner used a constant learning rate of
0.0002. With a batch size of 4, this took about 200 epochs
before the network converges. Since the loss function took
a long time before the values could drop to considerable
amount. Hence we implemented an adaptive learning rate,
which starts with a high value of 0.002 but gradually reduces
by 20% at every step of 10,000 iterations (15 epochs). Figure
3 shows a plot comparison of loss functions of original paper
(as implemented on our computer) and the final loss curve
obtained from our improvised hyper-parameter. These plots
are obtained using Tensorboard.

D. Batch Normalization

With the goal of further regularizing the network, we also
implemented batch normalization after every 4 conv layers.
Unfortunately, it had a negative impact on the model and



(a) Color fading

(b) brightness change

(c) saturation change

Fig. 4: Sample of how input data is augmented by changing
brightness, coloring, saturation and shifting gamma

increased the overall loss. Hence, we decided to discard batch
normalization from our implementation. This was probably
because of over regularization.

E. Data Augmentation

Data Augmentation is an important factor that can improve
results significantly. With this, possible scenarios that can
come across during real-time testing like varying brightness,
different orientations and scales are taken into account. SfM-
Learner already include some data augmentation by randomly
scaling and cropping the input data. In addition to that, we
included random shifting of the gamma values (making regions
darker or lighter), randomly changing brightness and color of
the images. These lead to improvements in loss.

IV. RESULTS

After implementing the Network changes mentioned in the
previous sections, we train our network for 200,000 iterations
with a Mini-batch size of 16 on a Nvidia Tesla P100 GPU. The
average time per iteration came out to be about 33 milliseconds
per iteration. The SfM learner took about 22 milliseconds but
with a mini batch size of 4.

Figures 2 through 7 demonstrates the result comparison
between original approach and our approach.

Figure 2 shows the difference between the depth map
output between the depths generated by SfMLearner and our
upgraded version. The Figure 7 shows various metric graphs
of loss functions evolving over the training period

The Loss metrics are summarized in table III.

(a) ground truth trajectory for seq. 09

(b) ground truth trajectory for seq. 10

Fig. 5: Odometry output from data

Model ATE mean std
Original 0.0215 0.0131
Modified 0.0142 0.0089

TABLE I: Pose error comparison between original approach
and our Implementation for seq 9

Model ATE mean std
Original 0.0091 0.0070
Modified 0.0153 0.0118

TABLE II: Pose error comparison between original approach
and our Implementation for seq 10



Fig. 6: Some input(left) and Output(right) images from our
implementation.

(a) explanability loss

(b) pixel loss

(c) smooth loss

(d) SSIM loss

(e) Total loss

Fig. 7: Error progression for our approach



SfM Learner Model abs rel sq rel rms log rms d1 all a1 a2 a3
As Cited 0.2003 1.8324 6.8304 0.2810 0.0000 0.7122 0.8944 0.9555

Trained by us 0.2655 2.3823 8.0507 0.3484 0.0000 0.5608 0.8413 0.9265
Our Implementation 0.4402 4.8310 12.4181 0.5890 0.0000 0.3008 0.5602 0.7706

TABLE III: Error comparison between original approach and our output

V. DISCUSSION AND POSSIBLE MODIFICATIONS

There are many possible modifications that we thought
of which might lead in improvements of results, but due
to limited time we were not able to implement them. The
following possible modifications are listed below-

1. Instead of using a simple CNN for depth estimation
methods, we can make use of Long Short-Term Memory
(LSTM) units with convolutional layers to effectively utilize
multiple previous frames in each estimated depth maps. This
will lead to improvements in computation of depth maps.The
inspiration for this idea is taken from this paper [3], it takes
into both SFMLearner and Geonet Architectures into account.
[5]

2. SFM does not take into epipolar constraints into account.
We can incorporate epipolar constraints when computing
loss. This constraints require us to compute the Essential
matrix which can be done using nister 5-point algorithm. The
Essential Matrix contains information about the relative poses
between the views. Similar concept is explained in [2].

REFERENCES

[1] Nikolaus Mayer et al. “A Large Dataset to Train Convo-
lutional Networks for Disparity, Optical Flow, and Scene
Flow Estimation”. In: CoRR abs/1512.02134 (2015).
arXiv: 1512 . 02134. URL: http : / / arxiv. org / abs / 1512 .
02134.

[2] Vignesh Prasad, Dipanjan Das, and Brojeshwar
Bhowmick. “Epipolar Geometry based Learning of
Multi-view Depth and Ego-Motion from Monocular
Sequences”. In: arXiv preprint arXiv:1812.11922 (2018).

[3] Rui Wang, Jan-Michael Frahm, and Stephen M Pizer.
“Recurrent neural network for learning densedepth
and ego-motion from video”. In: arXiv preprint
arXiv:1805.06558 (2018).

[4] Zhou Wang et al. “Image Quality Assessment: From Er-
ror Visibility to Structural Similarity”. In: IEEE TRANS-
ACTIONS ON IMAGE PROCESSING 13.4 (2004),
pp. 600–612.

[5] Zhichao Yin and Jianping Shi. “Geonet: Unsupervised
learning of dense depth, optical flow and camera pose”.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 1983–1992.

[6] Tinghui Zhou et al. “Unsupervised Learning of Depth
and Ego-Motion from Video”. In: CVPR. 2017.


