
Learning the Structure from Motion — An
Unsupervised Approach

Khoi Viet Pham
PhD Student, Computer Science
Email: khoi@terpmail.umd.edu

Gnyana Teja Samudrala
M.Eng, Robotics

Email: sgteja@terpmail.umd.edu

John D. Kanu
PhD Student, Computer Science
Email: jdkanu@terpmail.umd.edu

Abstract—In this paper we present an unsupervised learning
framework for predicting monocular depth and ego-motion from
video sequences. We try to improve the end-to-end learning
approach presented in [1]. In contrast to the original SfMLearner
our training data set is limited to a subset of the original KITTI
data set. Our method uses ResNet architecture for depth estima-
tion, with SSIM and forward-backward consistency loss which
are adapted from [4]. The evaluations and comparision against
provided KITTI data set show the effectiveness of our approach,
which improves the abs rel depth metric of SfMLearner by about
18% on the KITTI depth benchmark.

I. INTRODUCTION

Developing a 3D scene geometry from a video sequence
is the fundamental problem in perception. It involves various
vision tasks like feature matching, depth estimation and ego-
motion. These techniques have a wide range of applications
in autonomous driving, interactive robotics, localization and
navigation, etc. Traditional methods use a integrated pipeline
of above tasks to simultaneously recover depth and pose of
the camera. But these methods are prone to outliers in non-
textured regions which cannot be completely avoided.

In order to overcome these problems, we apply deep learn-
ing models for each task and achieve remarkable developments
over traditional methods. But in order to develop these models
we need large data sets with labels to perform it in a supervised
way. To avoid that we implement unsupervised framework,
which is based on warping nearby views to the target using
the computed values of depth and the pose.

II. RELATED WORK

Structure-from-Motion (SfM) is the problem of inferring
scene structure and camera motion from images. After a
review of recent literature on this topic, we have identified
several methods that have inspired our work in this paper. Zhou
et al. [1] jointly train two convolutional neural networks for
predicting depth and pose, with view synthesis as supervision
(SfMLearner). Using a similar approach, Yin et al. [4] train
convolutional networks predicting depth and pose for rigid
reconstruction, along with a residual flow network that predicts
optical flow for non-rigid motion localization (GeoNet). An
adaptive geometric consistency loss is employed, improving
robustness to outliers. Zou et al. [5] propose an unsupervised
learning framework for predicting single-view depth, pose,
and optical flow, with forward-backward consistency loss and
edge-aware smooth loss (DF-Net).

III. APPROACH

We present several modifications to SfMLearner that sub-
stantially improve accuracy. Modifications include the replace-
ment of the DispNet with a residual network, enhancement
of the learning signal through the integration of forward-
backward warping consistency loss and structural similarity
loss, and photometric augmentation for improved generaliza-
tion. These modifications improve the abs rel depth metric of
SfMLearner by relatively 18% on the KITTI depth benchmark.

A. Network Architecture

Similar to the SfMLearner architecture, we employ two
networks for predicting depth and pose. Rather than using a
DispNet to predict depth, we employ ResNet50 [2], a 50-layer
deep residual architecture that already achieves superb perfor-
mance on image classification task. The ResNet architecture
offers the following advantages: (1) skip-connection to allow
easier gradient backpropagation and mitigate the vanishing
gradient problem (2) deep architecture with residual paths
make it a complex ensemble of shallower networks [3] that is
highly powerful to this task.

The idea of using ResNet is also employed in other works
in this literature, such as GeoNet [4] and DFNet [5]. However,
their implementations are not exactly the same as the originally
proposed ResNet from [2]. For example, in the first residual
block, GeoNet & DFNet’s implementations employ a stride of
2, whereas the original ResNet does not. In this work, we stick
to the same architecture as in the originally proposed ResNet
and we refer to it as DispResNet.

We also notice the SfMLearner network experiences over-
fitting on the provided KITTI training set of 12K images.
Therefore, we simplify its DispNet architecture by reducing
the number of feature maps in each layer. We refer to this
network as DispNetSimple.

Since our primary objective is to improve the estimated
depth map, we tended to focus our efforts on improving the
depth prediction module, and left the Pose CNN intact.

B. Formulation of the Loss Function

1) Forward-backward warping consistency loss: The origi-
nal view synthesis objective from SfMLearner already imposes
a geometric forward warping constraint, i.e. the model warps
each source image to the target coordinate frame using the
predicted depth from the depth module, and attempts to



minimize the L1 loss between the target frame and the warped
frame (more details can be found in section 3.1 from [1]).
Inspired from the work of GeoNet [4], in addition to this
forward warping constraint, we add an extra backward warping
constraint by warping the target frame back to each source
coordinate frame and try to minimize the L1 loss between
them. This idea is presented in the last paragraph of section
3.4 in [4].

We refer to this as the forward-backward warping consis-
tency loss function, which imposes a geometric consistency
constraint on the depth map estimated from the target frame
as well as each source frame. By enforcing forward-backward
warping consistency on the depth prediction, we identify
invalid regions and impose a constraint on valid regions,
encouraging the network to produce consistent predictions
for the forward and backward directions. The forward and
backward loss is formulated as the following objective

Lfw = ρ(It, Ĩ
s→t
s ), (1)

Lbw = ρ(Is, Ĩ
t→s
t ), (2)

where ρ(.) is a dissimilarity metric (e.g. L1 loss), Is and It
are the source and target frame, Ĩs→t

s is the result of warping
the source frame to the target coordinate frame, and Ĩt→ts

t is
vice-versa. Here, we want to train the model to minimize this
dissimilarity between all pairs of source and target frame.

2) Image dissimilarity metric: We employ the L1 loss
as our main image dissimilarity metric. Apart from it, we
also incorporate a structural similarity index (SSIM) into
the dissimilarity metric ρ(.), given by [7]. The SSIM is the
comparison between two images on various windows of equal
size. The index is a value between -1 and 1, where 1 is the case
in which both images are identical. It is defined as follows,

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y) + c2
, (3)

where µ is the average, σ is the covariance, c1 and c2 are the
variables to stabilize the division with weak denominator. In
overall, our dissimilarity function ρ(.) is

ρ(Ia, Ib) = λl1‖Ia − Ib‖1 + λssimSSIM(Ia, Ib). (4)

3) Smooth function: : We use the same smooth function as
in SfMLearner.

Our final objective function is

Lfinal =
∑
l

∑
〈t,s〉

Lfw + Lbw + λsLsmooth, (5)

where l iterates over 4 image scales, 〈t, s〉 iterates over all
source-target pairs.

C. Data Augmentation and pre-processing

In addition to random scaling and cropping as in SfM-
Learner, images are pre-processed and augmented using the
method presented with UnFlow [6]. Images are pre-processed
with random additive Gaussian noise (0 < σ ≤ 0.04),

Set Model Error metrics
Abs Rel Sq Rel RMSE RMSE log

Train SfMLearner (ours) 0.253 6.512 7.684 0.295
Train SfMLearner aug 0.215 1.992 5.657 0.294
Train DispNetSimple 0.185 3.714 6.465 0.249
Train DispResNet 0.207 4.813 6.642 0.266
Test SfMLearner (ours) 0.207 2.007 7.043 0.288
Test SfMLearner aug 0.225 2.136 5.822 0.303
Test DispNetSimple 0.201 1.839 6.776 0.279
Test DispResNet 0.169 1.324 6.295 0.252

TABLE I: Single-view depth error metrics results on the
provided 12K KITTI training set and the KITTI testing set
acquired using the split of Eigen et al [8]. Our best model is
highlighted.

random additive brightness changes, random multiplicative
color changes (0.9 ≤ m ≤ 1.1), contrast (from [-0.3, 0.3])
and gamma changes ([0.7,1.5]). All inputs are normalized.
The original SfMLearner modified with data augmentation is
addressed in the table as SfMLearner aug.

IV. EXPERIMENTS

A. Training Details

We train on the 12K provided images from the KITTI
dataset. Each image is 128×416. Explainability regularization
weight was left at 0. Networks were optimized using the Adam
optimizer with learning rate 2 × 10−4, β1 = 0.9, β2 = 0.999
and batch size 4, which were identified by a parameter sweep
on the training data.

Regarding hyperparameters in the loss function, emperi-
cally, we we select λl1 = 0.15, λssim = 0.85, λs = 0.5.

B. Network Architecture

Regarding DispNet and PoseNet, we use the same archi-
tecture as in SfMLearner. For DispResNet, we use ResNet50
(exact same architecture as in [2]) for the encoder, where as
the decoder is similar to that of DispNet (with some small
modifications which can be seen from the source code). We
use ReLU as the activation function in all networks.

V. RESULTS

A. Single-view depth estimation

We retrain the SfMLearner for 200K iterations on the
provided 12K images and report the experimental results in
table I and II. Note that we could not reproduce the results
reported by the authors on their GitHub, even though we have
used the same source code except for some modifications
to the collect summaries function. However, our results are
similar to their version in the SfMLearner paper [1]. We also
show the results achieved by DispResNet and DispNetSimple
in table I and table II. Note that these models are trained on
the provided 12K training images, with data augmentation as
mentioned in the previous section, and tested on the KITTI
testing set split of Eigen et al [8].

From table I, we notice some strange results: for SfM-
Learner (ours) and DispResNet, their training error metrics are
both worse than their test error metrics (abs rel, sq rel, rmse,



Set Model Accuracy metrics
δ < 1.25 δ < 1.252 δ < 1.253

Train SfMLearner (ours) 0.748 0.882 0.933
Train SfMLearner aug 0.700 0.893 0.954
Train DispNetSimple 0.804 0.930 0.968
Train DispResNet 0.789 0.925 0.964
Test SfMLearner (ours) 0.696 0.889 0.953
Test SfMLearner aug 0.679 0.886 0.950
Test DispNetSimple 0.702 0.895 0.957
Test DispResNet 0.751 0.913 0.967

TABLE II: Single-view depth accuracy metrics results on the
provided 12K KITTI training set and the KITTI testing set
acquired using the split of Eigen et al [8]. Our best model is
highlighted.

Model Seq. 09 Seq. 10
SfMLearner (ours) 0.0178± 0.0068 0.0141± 0.0091
DispNetSimple (ours) 0.0183± 0.0068 0.0143± 0.0096
DispResNet (ours) 0.0185± 0.0064 0.0145± 0.0089

TABLE III: Absolute Trajectory Error (ATE) on the KITTI
odometry split, sequence 9 and 10, averaged over all 3-frame
snippets.

rmse log). Normally, we expect the model performance on
the training set to be much better than the performance on the
testing set, however, this doesn’t happen here. We did not have
time to inspect this problem in more details, however, we still
have some thoughts to explain this phenomena. Table II shows
that the accuracy metrics on the training set is still clearly
better than that of the testing set; therefore, we suspect that
there are many outliers in the training set that greatly affect
the error metrics while they only have minor effect on the
accuracy metrics (the accuracy metric is based on the number
of estimated depth points that fall into 3 specific ranges, so it
is less prone to outliers).

From table I and II, we see that the DispResNet outperforms
the other models (improve SfMLearner’s abs rel metric by
≈ 18%). Figure 1 shows the abs rel evaluation results versus
training iterations for the 3 models: SfMLearner, DispNetSim-
ple, and DispResNet. The plot shows that the performance
of DispResNet is still improving, however, we did not have
enough time to pursue more training.

Figure 3 shows a heatmap visualization of approximate
depth prediciton error for difficult cases. We can observe much
of the error comes from moving objects, thin structures, and
complex objects like trees and bushes. One interesting case
is included, showing curved lines that resemble optical flow
for a camera rotating around the vertical axis, which is an
interesting phenomenon to inspect further.

B. Pose estimation

We evaluate the pose estimation over 3-frame snippets (not
5-frame snippets as in [1]). From III, we see that SfMLearner
has a slightly better result than our DispResNet. Since we
did not focus on optimizing for pose, we could not give any
explanation for this part.

Fig. 1: Plot of abs rel versus training iterations for our 3
models: SfMLearner (pink), DispNetSimple (blue), and Dis-
pResNet (red).

VI. DISCUSSION

We would like to discuss more the reason we select ResNet
as our depth module. After exploring other related works,
we believe all variants of the forward-backward consistency
loss offer great performance improvement over SfMLearner.
Therefore, our first attempt was to train SfMLearner with the
proposed forward-backward consistency loss. However, from
inspecting the training/validation plot, we believe the SfM-
Learner is not powerful enough to learn to impose the forward-
backward consistency constraint. Therefore, we approach to
select the ResNet architecture as our depth module due to its
well-known excellent performance on other computer vision
tasks. Experimental results have shown that our intuition is in-
deed correct, the DispResNet performance clearly outperforms
SfMLearner on the depth metric.
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Fig. 2: The figure showing depth maps of SfMLearner in 2 column and DispResNet in 3 column. The 4 column is the ground
truth map. The first 3 rows are the data in training set and last 3 correspond to validation set.

(a) Moving objects, thin structures (b) Complex objects like trees,
bushes (c) Large objects in periphery

(d) Curved lines resembling optical
flow as camera rotates around ver-
tical axis

Fig. 3: Visualization of difficult cases using approximate depth error heat maps



(a) Ego motion estimated from
SfMLearner

(b) Ego motion estimated from
DispNetSimple with SSIM loss

(c) Ego motion estimated from Dis-
pResNet

Fig. 4: Ego motion for sequence 9. The blue points are the face of the camera and the red points are centre point.

(a) Ego motion estimated from
SfMLearner

(b) Ego motion estimated from
DispNetSimple with SSIM loss

(c) Ego motion estimated from Dis-
pResNet

Fig. 5: Ego motion for sequence 10. The blue points are the face of the camera and the red points are centre point.


