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Abstract—In the previous project, we dealt with reconstructing
3D structure of a given scene from multiple views using the
traditional approach pipeline for Structure-from-Motion. In this
project, we explore the deep learning approach to reconstruct the
3D scene by learning the methods used in the SFMLearner paper
by David Lowes team at Google [1]. This presents the approach
for the task of monocular depth estimation and camera motion
estimation from unstructured video sequences. Also, tweaking of
the network is studied to make it perform better.

I. INTRODUCTION

The goal of the SfMlearner is to learn the ego-motion
by mimicking the way humans learn to infer ego motion
and scene structures over time. It is difficult to recreate an
interpretation of the geometry and motion in a real world
scene. Years of research in geometric computer vision has
not been able to model the scene and motion as good as a
human.

One way of approaching this problem would be to learn
the way a human would. One approach is to train a model
that observes sequences of images and aims to explain its
observations by predicting likely camera motion and the
scene structure i.e estimating depth given an image and
transformation given a set of images. The transformation
represents rotation and translation (a total of 6 DoFs) and
the depth map is a per pixel estimate of ego-motion. The
approach is end to end and unsupervised i.e given an input set
of sequence of images, the depth map is estimated for each
image and pose estimated between subsequent images in time.

The unsupervised approach means no labeling of data
and no camera motion information is required. The
approach is inspired by scene synthesis, which performs
consistently well when the convolution neural network
ihttps://www.overleaf.com/project/5cdb0b74292fe621d8b5fa4bs
trained on diverse layout and appearance structures. By
training the network to learn scene synthesis, it also implicitly
learns to estimate depth per image and pose between 2
images. Datasets like KITTI can be used to empirically
evaluate the model and demonstrate effectiveness.

II. APPROACH

In the SFMLearner paper, the authors propose a Convo-
lutional Neural Network framework to jointly train the single

view depth and the camera pose estimate from unlabeled video
sequences. So this is an unsupervised learning approach to
solve the problem for monocular depth estimation and pose
estimation. But an interesting feature of this CNN framework
is that the outputs from the model can be independently used
in inference during test time. The major assumption is that
the scenes in the video scenes are rigid, i.e, ego motion is not
considered.

Given one image of the scene, a target view of that image
is synthesized with given the pose, per-pixel depth and the
visibility in a nearby view. This view synthesis is done in a
fully differentiable manner and the objective is formulated as
shown in equation 1

L =
∑
s

∑
p

|It(p)− Îs(p)| (1)

where p indexes over the pixel coordinated and Îs is the
source view Is warped to the target coordinate frame. This
can be applied to standard videos without the information of
the pose estimate.

As equation 1 indicates, the target frame It is reconstructed
by sampling pixels in Is based on the depth map D̂t and
relative pose T̂t→s. If pt is the pixel position in target view,
and K is camera intrinsic matrix, from equation , pt’s projected
coordinates onto source view ps can be obtained and then the
value of Is(ps) is linearly interpolating since ps is continuous.
The interpolated value is then used to fill Îs(pt).

ps ∼ KT̂t→sD̂t(pt)K
−1pt (2)

The entire procedure is accomplished with the implementation
of spatial transformer networks.

Model limitations: Since the error calculation is based
on view synthesis from monocular videos, the following
assumptions hold:
• The scene is mostly static i.e no dynamic objects.
• There are no occlusions between the source and target

frames.
If these assumptions are not held during training then the

model won’t be perfect. To be robust to these assumptions
during the training phase, an explainability prediction network



along with depth and pose networks is used to obtain a per
pixel soft max for each target source pair indicating networks
belief that the model holds the above assumptions. To avoid
overfitting the model, the regularization term is used that
resolves the trivial solution to the network’s error.

A well known problem in motion estimation is that the
gradients are derived from the pixel intensity differences
between I and its four neighbors. The two strategies used in
the SFMLearner paper are:

1) Using an encoder-decoder based convolutional architec-
ture with a small bottleneck for depth network.

2) Explicit multi-scale and smoothness loss that allows
gradients to be derived from larger spatial regions directly

A. Network Architecture

1) For monocular single view depth prediction, the authors
of SFMLearner used the architectures of that in DispNet.
It is based on an encoder decoder design with skip
connections.

2) For pose estimation, the input is the target view images
stacked with the source view which then is used to
aggregate predictions at all spatial locations.

3) An explainability prediction network is also used which
shares with the pose network the first five feature encod-
ing layers. All the convolution and deconvolution layers
use the ReLU activation function and the prediction layers
use no activation function.

B. Modifications in Architecture

The changes made to the network are as follows:
1) The loss function was changed to L2 loss from L1 loss.
2) The number of filters in layer cnv1, cnv2, cnv3, cnv4,

and cnv5 were changed to 32, 64, 128, 256, and 512
respectively.

3) The number of filters in cnv6, cnv7 were set to 512.
4) The number of filters in upcnv5, upcnv4, upcnv3, upcnv2,

and upcnv1 were changed to 512, 256, 128, 64, and 32
respectively.

III. CHALLENGES

We faced the following challenges during the course of the
project:
• The training of models was done on google cloud plat-

form. The model needed to be trained for 100k iterations
to get good results. We could successfully train for 24000
iterations as the google cloud platform lost connection
frequently and we had to restart the training from scratch.

• Tensorboard plots could not be obtained because the
training was done on the google cloud platform.

IV. RESULTS

A. Depth Comparison

Following are the comparison of depth estimation outputs
obtained by the original SfMLearner model and the model
trained by us.

Fig. 1: (a) RGB frame of the image sequence. (b) Output from
SFMLearner paper architecture (a) Output from our modified
version of SFMLearner.

Fig. 2: (a) RGB frame of the image sequence. (b) Output from
SFMLearner paper architecture (a) Output from our modified
version of SFMLearner.



Fig. 3: (a) RGB frame of the image sequence. (b) Output from
SFMLearner paper architecture (a) Output from our modified
version of SFMLearner.

Fig. 4: (a) RGB frame of the image sequence. (b) Output from
SFMLearner paper architecture (a) Output from our modified
version of SFMLearner.

B. Odometry Comparison of Pose Estimation

Fig. 5: (a) Trajectory plot using modified architecture for Test
sequence 9 (b) Trajectory plot using SfMLearner architecture
for Test sequence 9.

Fig. 6: (a) Trajectory plot using modified architecture for Test
sequence 10 (b) Trajectory plot using SfMLearner architecture
for Test sequence 10.
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