
Project 2: Face Swap
Prateek Arora

Masters of Engineering in Robotics
University of Maryland, College Park

Email: abhi1625@umd.edu

Abhinav Modi
Masters of Engineering in Robotics

University of Maryland, College Park
Email: kmadhira@terpmail.umd.edu

Kartik Madhira
Masters of Engineering in Robotics

University of Maryland, College Park
Email: pratique@terpmail.umd.edu

Using 1 Late day

I. INTRODUCTION

The aim of this project is to implement an end-to-end
pipeline to swap faces in a video just like Snapchats face swap
filter. There are two phases to the project. Phase 1 deals with
traditional face swap approach and Phase 2 deals with deep
learning pipeline to swap faces. Each are explained in detail
below.

PHASE 1
II. DELAUNAY TRIANGULATION

A. Facial Landmarks detection

The first step in the traditional approach is to find facial
landmarks (important points on the face) so that we have
one-to-one correspondence between the facial landmakrs. The
reason to use facial landmarks instead of using all the points on
the face is to reduce computational complexity. For detecting
facial landmarks we have use dlib library built into OpenCV
and python. Some sample outputs of Dlib is shown below.

Figure 1: 68 Facial Landmark Detection using dlib OpenCV

B. Face Warping using Triangulation

After obtained facial landmarks, we need to ideally warp the
faces in 3D, even though we don’t have 3D information. In
order to do so, we can consider a small area around each fea-
ture to be a 2D plane. These 2D plane can be transformed and
into 2D planes of other face to approximate 3D information of
face. Using the facial we perform triangulation. Triangulating
or forming a triangular mesh over the 2D image is simple but
we want to triangulate such that it’s fast and has an ”efficient”
triangulation. We do so using Delaunay Triangulation and can
be constructed in (O(n log n)) time. We want the triangulation
to be consistent with the image boundary such that texture
regions won’t fade into the background while warping. We
tried performing triangulation of the two images but in some
cases the triangulation results were different i.e. triangle in
one image didn’t correspond to triangles in other image for
corresponding features. To circumvent this issue we take the
average of feature points and perform delaunay triangulation
of them. Since we know the corresponding points which were
averaged we get the same triangle correspondences in the
same images. Delaunay Triangulation tries the maximize the
smallest angle in each triangle. Triangulation output is shown
in figure 2

We have used the getTriangleList() function in
cv2.Subdiv2D class of OpenCV to implement Delaunay
Triangulation. Now, we warp the destination face (B) to the
source face (A) (we are using inverse warping so that we
don’t have any holes in the image) or to a mean face (obtained
by averaging the triangulations (corners of triangles) of two
faces). Warping is performed as explained in the following
steps:

1) For each triangle in the target/destination face B, the
Barycentric coordinate for every pixel are calculated
using the following equation.

α1 α2 . .
β1 β2 . .
γ1 γ2 . .

 =

Ba,x Bb,x Bc,x
Ba,y Bb,y Bc,y
1 1 1

−1 xB1
xB2

. .
yB1

yB2
. .

1 1 . .

Here, the Barycentric coordinate is given by[
αi βi γi

]T
where i∈ [1, 2, 3..] is the pixel

number. The Barycentric coordinate are calculated

Figure 2: Triangulation output on both images

for every pixels in the image. The matrix after the
equal is computed only once per triangle. In this
matrix, abc represent the corners of the triangle and
coordinates of the particular triangle corner respectively.

2) Since we have baycentric coordinates of all the pixels,
we next determine which points in the image B lie inside
the triangle by applying the following constraint:
• α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1],
• α+ β + γ = 1

We now have the filtered baycentric coordinates corre-
sponding to the points lying inside the triangle.

3) Further we compute the corresponding pixel position
in the source image A using the filtered barycentric
equation shown in the last step but with a different
triangle coordinates. This is computed as follows:xAyA

zA

 = A∆

αβ
γ

Here, A∆ is given as follows:

A∆ =

Aa,x Ab,x Ac,x

Aa,y Ab,y Ac,y

1 1 1

After we obtain

[
xA yA zA

]T
,these values are con-

verted to homogeneous coordinates as follows:

xA =
xA
zA

and yA =
yA
zA

4) Now, we copy back the value of the pixel at
(xA, yA) to the target location. We have used
scipy.interpolate.interp2d to perform this operation.
The warped images are shown below.

Figure 3: Left: Image A, Right: Image B warped to A

TRIANGULATON FACE SWAP RESULTS

Figure 4: Clockwise from top left: Image A, Image B, Face
swaped Images for custom set 1 using Triangulation

Figure 5: Clockwise from top left: Image A, Image B, Face
swaped Images for custom set 2 using Triangulation

Figure 6: Clockwise from top left: Test set 1, Test set 2, Test
set 3 result using Triangulation

III. THIN PLATE SPLINES

In the previous section we used affine transformations
to warp each corresponding triangle. This is not the best
way to warp a human face due to its complexity. In this

section we do the transformations using Thin-Plate Splines.
Thin-Plate Splines are a spline based technique used for
data interpolation and smoothing. The process is physically
analogous to bending a thin sheet of metal. The goal is to
find a mapping fx(x, y) and fy(x, y) : R2 → R2 such that:

fx(xi, yi) = x
′

i (1)

and

fx(x, y) = a1+axx+ayy+

p∑
i=1

wiU(||(xi, yi)−(x, y)||1) (2)

The steps involve solving a system of linear equations of
the form:

w1

w2

...
wp

ax
ay
a1

= (

[
K P
PT 0

]
+ λI(p+ 3, p+ 3))−1

v1

v2

...
vp
0
0
0

(3)

where Kij = U(||(xi, yi) − (xj , yj)||1), and is of the size
p× p. K is a symmetric matrix with the diagonal elements 0.
K is plotted in the image shown below: vi = f(xi, yi) and

Figure 7: K matrix

ith row of P is (xi, yi, 1) and λ is a regularization term very
close to 0.
The second step is to transform the pixels of the face
in image B using the above developed TPS model and
replace them in the image A . The weights obtained
after solving the above set of equations are used to find
the warped location of the desired point using the equation(2).

The results obtained for transforming the face using TPS
are shown below:

Figure 8: Warped image using Thin Plate Splines

IV. BLENDING

For blending we used third party code in [1], that corrects
color of the warped face according to the destination image.
We use cv2.seamlessClone for this operation. Figure 4 shows
the effect after blending the target image with the destination
image.

Figure 9: Final output of TPS after blending

The test sets given were passed through the given pippeline

of TPS and the results are shown in the figs (10). Each test set
was aimed towards testing dfferent aspects of the pipeline. The
test 1 output is good in terms of raw facial landmark detection
in each frame. There is less motion blur as compared to other
test videos. Test 2 was to swap the two bigger faces in the
image. The pipeline also gives satisfying results for this test
set. The only problem we face is that facial landmark is not
very robust. In some frames when only one side of the face
is visible the dlib facial detection fails. A similar case occurs
for very illumination of the face in test 3 video. The outputs
for these videos can be improved by implementing a motion
filtering or feature tracking algorithms like EKF(Estimated
Kalman Filter) on top of the current pipeline.

Figure 10: Output images showing swaped faces for Test1,
Test2, Test3

V. PHASE 2: DEEP LEARNING

For this phase, an off-the-shelf model is trained to obtain
face fiducials using deep learning. The approach used here
implements a supervised encoder-decoder model to obtain the
full 3D mesh of the face. Wr ran the code to obtain face
fiducials/full 3D mesh.

A. PRNet results for Test cases

Figure 11: Clockwise from top left: Image A, Image B, Face
swaped Images for Test sets using PRNet

VI. CONCLUSION

As compared to TPS we get better results in terms of
transforming the face from one image to another. There is
a slight issue while transforming the images using TPS. The
transformation equation is highly nonlinear and thus we need
to process each point(x,y) individually which is computation-
ally very expensive. A way to model the process in another
way which ensures faster runtime is needed. The value of λ is
usually close to 0. But in our case, we have used λ = 50, which
works better. As mentioned in the instructions the norm used
to calculate K, using the function U = −r2log(r2), is first
order. But according to Bookstein[[2]], 2nd order norm works
better provides a better intuition in the physical sense. Also
the paper [[3]] provides a method of approximating the whole
process of transforming points using Thin Plate Splines. The
process uses matrix approximation to find the mapping for
a larger number of points(Nystrom method). This approach
utilizes the full set of basis functions to approximate the full
set of target values. This approximation technique was not
tried because of time constraints but was worth mentioning
here and can be tried in the future. In the Deep learning based
face swapping using PRnet, we get better results as compared
to either of the traditional approaches. This is because, the
faceswap using PRnet uses full 3D mesh grid of the face mask
and then warps on this surface. TPS approach is similar to the
3D mesh creation but is approximation to a 3D surface than
create 3D mesh itself. Since the traditional approaches use dlib
facial features, not all the features of the face are represented
in the warp. But 3D mesh created from the PRnet uses a 3D
construction of the face on which the warped face image face
is fully conserved.

REFERENCES

[1] Faceswap - github. https://github.com/wuhuikai/FaceSwap.
[2] Fred L. Bookstein. Principal warps: Thin-plate splines and

the decomposition of deformations. IEEE Transactions on
pattern analysis and machine intelligence, 11(6):567–585,
1989.

[3] Gianluca Donato and Serge J Belongie. Approximation
methods for thin plate spline mappings and principal
warps. Citeseer, 2003.

